摘要
在[1]中陈省身证出:如果M是Sn+1中闭的可定向极小超曲面。则若M的高斯象位于Sn+1的开半球内,那末M必是全测地。在[2]中李安民对n=2的情形给予了改进。本文进一步改进了[2]中的结果,并对S4中的二维极小子流形,也作了讨论。
In,Cherm Shiing-Shen had proved:Let M be a closed oriented minimal hypersurface in S n+1 .If the image of the Gauss map of M lies in an open hemisphere of S n+1 ,then M must be totally geodesic.In ,when n=2,Li An-Min improved the result of Chern's.This paper makes further improvement on the result in .In the meantime,it gives a discussion on the case of two-dimensional minimal submanifolds in S 4.
出处
《广西师院学报(自然科学版)》
1998年第1期29-33,共5页
Journal of Guangxi Teachers College(Natural Science Edition)
基金
福建省自然科学基金
关键词
全测地
高斯象
外在刚性定理
极小超曲面
totally geodesic
image of the Gauss map
subharmonic function