期刊文献+

序列型空间的一个特征刻划 被引量:1

A CRJTERION OF SEQUENTIAL SPACES
原文传递
导出
摘要 本文证明了拓扑向量空间E是序列型空间的一个特征为:(1)E的每个序列开集都是开集;(2)取值于E中的任意无穷矩阵(xij)i,j,若对每个j均有limxij=xj,并且limxj=x,则一定存在严格递增序列(ik)和(jk)使得limxikjk=x.作为应用证明了序列型A-空间必是k-空间. in this paper, it is proved that the criterion for a topological vector space Eto be a sequential space is: (1) every sequentially open set of E is an open set; (2) for everyinfinite matrix (xij)i,j of E, if lim xij= xj (j = 1, 2,…) and lim xj = x, then there are strictlyincreasing sequences (ik) and (jk) such that lim xikjk = x. As its application, we prove thatevery sequential A-space must be K-space.
出处 《系统科学与数学》 CSCD 北大核心 1998年第2期215-218,共4页 Journal of Systems Science and Mathematical Sciences
关键词 序列型空间 A-空间 K-空间 线性度量空间 Sequential space, A-space, K-space
  • 相关文献

参考文献3

  • 1Li Ronglu,Acta Sci Math,1993年,58卷,497页
  • 2Li Ronglu,Studia Sci Math Hungar,1992年,27卷,379页
  • 3Li Ronglu,Sys Sci Math Sci,1992年,5卷,3期,233页

同被引文献12

  • 1杨云燕.关于级数的绝对收敛[J].哈尔滨工业大学学报,2005,37(8):1113-1115. 被引量:3
  • 2王富彬,李容录,钟书慧.一类算子序列赋值绝对收敛定理[J].黑龙江大学自然科学学报,2007,24(2):178-180. 被引量:2
  • 3Robinson'A.On functional transformations and summability[J].Proc London Math Soc,1950,52:132-160.
  • 4Maddox I J.Infinite Matrices of Operators[M].Berlin-Heidlberg-New York:Springer-Verlag,1980.
  • 5Swartz C.The Schur and Hahn theorems for operator matrices[J].Rocky Mountain.Math,1985,15:67-73.
  • 6Li Ronglu,C Swartz.Spaces for which the uniform boundedness principle holds[J].Studia Sci Math Hungar,1992,27:379-384.
  • 7Wu Junde,Cheng Wei,Li Ronglu.Characterizations of a class of matrix transformations[J].Prope Revi De Math,1998,17(1):1-11.
  • 8Li Ronglu,C Swartz.A nonlinear theorem[J].Acta Sci Math,1993,58:497-508.
  • 9Li Ronglu,Wang Fubin,Zhong Shuhui.The strongest intrinsic meaning of sequential-evaluation covergence[J].Topology and Its Applications,2007,(154):1195-1205.
  • 10Li Ronglu,Yang Yunyan,Swartz C.A general Orlicz-Pettis theorem[J].Studia Sci Math Hungar,2005,42(4):63-76.

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部