期刊文献+

螺旋-环-螺旋蛋白家族的分类和功能 被引量:2

Classification and Function of the Basic Helix-loop-helix Protein Class
下载PDF
导出
摘要 含有螺旋-环-螺旋结构域的蛋白质是一类超家族蛋白,从细菌到哺乳动物中都广泛存在,且有较高的保守性。根据螺旋-环-螺旋蛋白的DNA结合能力、一些保守区的出现与否以及与E-box等顺式因子的结合特性等,可以把这个家族分成六类。螺旋-环-螺旋蛋白主要通过自身形成二聚体或与其他蛋白质形成异源二聚体而发挥其生物学功能。大部分已知的螺旋-环-螺旋蛋白是转录因子,它们常常通过抑制或活化与生长、分化有关的基因来改变细胞的进程。在动物中对这个家族的研究已经有比较长的历史,研究表明这个家族的基因与细胞的生长、衰老、肿瘤的发生以及神经发育、果蝇的性别决定等有关;近期在植物中的研究也表明它们有广泛的功能,如参与植物抗冻、抗干旱等的应答反应,以及在根、花药等器官的发育过程中起重要作用等。本文就螺旋-环-螺旋转录因子家族的分类和功能研究进展作简要介绍。 The basic helix-loop-helix-like protein belongs to a protein superfamily, and the most obvious character of this superfamily is the highly conserved helix-loop-helix domain, which exists in organisms from bacteria to mammals. Based on the DNA-binding activity, existence of conserved motifs outside the helix-loop-helix domain and binding speciality of the E-box, helix-loop-helix superfamily was classified into six subfamilies. Proteins in this superfamily function through formation of homodimer or heterodimer between different family members. Most of the proteins in this superfamily are transcription factors, and usually function to change cellular course by depressing or activation genes that is related to growth or differentiation. It has been demonstrated that this kind of proteins is involved in cell growth, cell senescence, cancer develop, nerves development and drosophila sex decision. Recent studies indicated that helix-loop-helix proteins also play important roles in plant, mediating signal transduction in processes such as freezing tolerance, drought tolerance and root development, anther development, etc.. In this paper, we give a brief review of the classification and functions of this protein superfamily.
作者 赵晓玲
出处 《细胞生物学杂志》 CSCD 2009年第2期205-211,共7页 Chinese Journal of Cell Biology
基金 国家高技术研究发展计划(863计划)(No.2006AA10A102)资助项目~~
关键词 螺旋-环-螺旋蛋白 转录因子 生物学功能 helix-loop-helix protein transcription factor biologic function
  • 相关文献

参考文献42

  • 1Pabo CO, Sauer RT. Transcription factors: Structural families and principles of DNA recognition, Annu Rev Biochem, 1992, 61:1053-1095.
  • 2Brownlie P, Ceska T, Lamers M, et al. The crystal structure of an intact human Max-DNA complex: new insights into mechanisms of transcriptional control, Structure, 1997, 5(4): 509- 520.
  • 3Murre C, McCaw PS, Baltimore D. A new DNA binding and dimerization motif in immunoglobulin enhance binding, daughterless, MyoD, and myc proteins, Cell, 1989, 56(5): 777- 783.
  • 4Murre C, Bain G, van Dijk MA, et al. Structure and function of helix-loop-helix proteins, Biochim Biophys Acta, 1994, 1218 (2): 129-135.
  • 5Atchley WR, Fitch WM. A natural classification of the basic helix-loop-helix class of transcription factors, Proc Natl Acad Sci USA, 1997, 94(10): 5172-5176.
  • 6Nair SK, Burley SK. Recognizing DNA in the library, Nature, 2000, 404(6779): 715, 717-718.
  • 7Ni M, Tepperman JM, Quail PH. PIF3, a phytochrome-interacting factor necessary for normal photoinduced signal transduction, is a novel basic helix-loop-helix protein, Cell,1998, 95(5): 657-667.
  • 8Li N, Zhang DS, Liu HS, et al. The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development, Plant Cell, 2006, 18(11): 2999-3014.
  • 9Zelzer E, Wappner P, Shilo B, et al. The PAS domain confers target gene specificity of Drosophila bHLH/PAS proteins, Genes Dev, 1997, 11(16): 2079-2089.
  • 10Fisher A, Caudy M. The function of hairy-related bHLH repressor proteins in cell fate decisions, Bioessays, 1998, 20(4): 298-306.

同被引文献48

  • 1刘明,赵琦,王小菁,赵玉锦,童哲.植物的光受体及其调控机制的研究[J].生物学通报,2005,40(5):10-12. 被引量:21
  • 2周波,李玉花.植物的光敏色素与光信号转导[J].植物生理学通讯,2006,42(1):134-140. 被引量:15
  • 3Alabadi D, Oyama T, Yanovsky M J, Harmon FG, Mas P, Kay SA(2001). Reciprocal regulation between TOC1 and LHY/ CCA1 within the Arabidopsis circadian clock. Science, 293: 880-883
  • 4Al-Sady B, Ni W, Kircher S, Schafer E, Quail PH (2006). Photoactivated phytochrome induces rapid PIF3 phosphorylation prior to proteasome-mediated degradation. Mol Cell, 23:439-446
  • 5Bailey PC, Martin C, Toledo-Ortiz G, Quail PH, Huq E, Heim MA, Jakoby M, Werber M, Weisshaar B (2003). Update on the basic helix-loop-helix transcription factor gene family in Arabidopsis thaliana. Plant Cell, 15 (11): 2497-2502
  • 6Bauer D, Viczian A, Kircher S, Nobis T, Nitschke R, Kunkel T, Panigrahi KC, Adam E, Fejes E, Schafer E et al (2004). Constitutive photomorphogenesis 1 and multiple photoreceptors control degradation of phytochrome interacting factor 3, a transcription factor required for light signaling in Arabidopsis. Plant Cell, 16:1433-1445
  • 7Duek PD, Fankhauser C (2003). HFR1, a putative bHLH transcription factor, mediates both phytochrome A and cryptochrome signaling. Plant J, 34:827-836
  • 8Fairchild CD, Schumaker MA, Quail PH (2000). HFR1 encodes an atypical bHLH protein that acts in phytochrome a signal transduction. Genes Dev, 14:2377-2391
  • 9Franklin KA, Whitelam GC (2004). Light signals, phytochromes and cross-talk with other environmental cues. J Exp Bot, 55:271-276
  • 10Fujimori T, Yamashino T, Kato T, Mizuno T (2004). Circadiancontrolled basic/helix-loop-helix factor, PIL6, implicated in light-signal transduction in Arabidopsis thaliana. Plant Cell Physiol, 45:1078-1086

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部