摘要
证明了在一定条件下,带变量核的奇异积分算子交换子[b,T]是L^p上的紧算子,也证明了,如核函数满足一定的条件,并且带变量核的奇异积分算子的交换子[b,T]是L^p上的有界算子或紧算子,那么b∈BMO(R^n)或b∈CMO(R^n).
This paper proves that, under certain conditions, the commutator [b, T] of the singular integral operator with variable kernel is a compact operator on L^p. Moreover, the authors show also that if the kernel satisfies some conditions, and the commutator [b, T] of the singular integral operator with variable kernel is a bounded or compact operator on L^p, then b∈ BMO or b ∈ CMO, respectively.
出处
《数学年刊(A辑)》
CSCD
北大核心
2009年第2期201-212,共12页
Chinese Annals of Mathematics
基金
国家自然科学基金(No.10571015
No.10826046)
教育部博士点专项基金(No.20050027025)资助的项目.
关键词
变量核
奇异积分
交换子
BMO
CMO
紧性
Variable kernel, Singular integrals, Commutators, BMO, CMO, Compactness