期刊文献+

变量核奇异积分算子交换子的紧性 被引量:3

Compactness of Commutators of Singular Integral Operations with Variable Kernel
下载PDF
导出
摘要 证明了在一定条件下,带变量核的奇异积分算子交换子[b,T]是L^p上的紧算子,也证明了,如核函数满足一定的条件,并且带变量核的奇异积分算子的交换子[b,T]是L^p上的有界算子或紧算子,那么b∈BMO(R^n)或b∈CMO(R^n). This paper proves that, under certain conditions, the commutator [b, T] of the singular integral operator with variable kernel is a compact operator on L^p. Moreover, the authors show also that if the kernel satisfies some conditions, and the commutator [b, T] of the singular integral operator with variable kernel is a bounded or compact operator on L^p, then b∈ BMO or b ∈ CMO, respectively.
作者 陈艳萍 丁勇
出处 《数学年刊(A辑)》 CSCD 北大核心 2009年第2期201-212,共12页 Chinese Annals of Mathematics
基金 国家自然科学基金(No.10571015 No.10826046) 教育部博士点专项基金(No.20050027025)资助的项目.
关键词 变量核 奇异积分 交换子 BMO CMO 紧性 Variable kernel, Singular integrals, Commutators, BMO, CMO, Compactness
  • 相关文献

参考文献10

  • 1Calderon A. and Zygmund A., On a problem of Mihlin [J], Trans. Amer. Math. Soc., 1955, 78:209-224.
  • 2Calderon A. and Zygmund A., On singular integrals with variable kernels [J], Applicable Anal., 1977, 78(7):221 238.
  • 3Chiarenza F., Frasca M. and Longo P., Interior W^2,p estimates for nondivergence elliptic equations with discontinuous coefficiens [J], Ric. Math., 1991, 40:149-168.
  • 4Fazio G. Di. and Ragusa M., Interior estimates in morrey spaces for strong solutions to nondivergence form equations with discontinuous coefficients [J], J. Funct. Anal., 1993, 112:241-256.
  • 5Chen Y. and Ding Y., L^2 boundedness for commutator of rough singular integral with variable kernel [J], Rev. Mat. Iberoarn., 2008, 24:531-547.
  • 6Uchiyama A., On the compactness of operators of Hankel type [J], Tohoku Math., 1978, 30:163-171.
  • 7Calderon A. and Zygmund A., Singular integral operators and differential equations [J], Amer. J. Math., 1957, 79:901-921.
  • 8Yosida K., Functional Analysis [M], New York: Springer-Verlag, 1968.
  • 9Stein E. M., Harmonic Analysis, Real-Variable Methods, Orthogonality and Oscillatory Integrals [M], Princeton: Princeton University Press, 1993.
  • 10Stein E. M. and Weiss G., Introdution to Fourier Analysis on Euclidean Spaces [M], Princeton: Princeton University Press, 1971.

同被引文献12

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部