期刊文献+

单机供应链排序及流水作业的反问题模型 被引量:2

Inverse Problems of Supply Chain Scheduling and Flowshop Scheduling
下载PDF
导出
摘要 最优化问题是在给定参数情况下,对某个目标函数,如费用、容量等,寻找问题的最优解。然而在许多现实生活中,有时只能知道问题的参数近似值和一个可行解,需要最小程度地调整参数,使得给定的可行解成为最优,这就是最优化问题的反问题。本文研究单台机器供应链排序和流水作业排序的反问题。根据调整参数的不同,本文利用排序理论把这些反问题表示为相应的数学规划形式。 Optimization problems are concerned to find optimal solutions with respect to some objective function, e. g. , costs, capacities, etc, given problem parameters. However, in many real- life situations only approxi- mate values of the parameters are known, and a feasible solution is required. In such cases we may need to "minimally" adjust the parameters, i. e. , minimize the "cost" of parameter adjustments, so that the feasible solution becomes an optimal solution under the new parameter values. This is called inverse optimization. The purpose of this paper is to study inverse problems of single - machine supply chain scheduling and flowshop scheduling. It will be shown that, by the theories of scheduling, these problems can be formulated as respective mathematical programmings in accordance with different parameter adjustments.
出处 《运筹与管理》 CSCD 北大核心 2009年第2期80-84,共5页 Operations Research and Management Science
基金 国家自然科学基金重大国际(地区)合作研究项目(70731160015) 江苏省教育厅项目(yw06037) 江苏省"青蓝"工程资助
关键词 运筹学 反问题 数学规划 供应链排序 流水作业 operation research inverse problem mathematical programming supply chain scheduling flowshop
  • 相关文献

参考文献2

二级参考文献11

  • 1Chen C L,Eur J Combinatorics,1993年,70卷,115页
  • 2T C E Cheng,Computers and Engng,1992年,22卷,495页
  • 3Lin Y,数学进展,1986年,15卷,4期,337页
  • 4Hu T C,Combinatorial Algorithms,1982年
  • 5Lin Y,郑州大学学报,1978年,2期,32页
  • 6Yue M,数学的实践与认识,1976年,14期
  • 7Heuberger C. Inverse combinatorial optimization: a survey on problems, methods and results[J]. Journal of Combinatorial Optimization, 2004, 8:329-361.
  • 8Burton D, Ph.Toint L. On an instance of the inverse shortest paths problem[J]. Mathematical Programming, 1992, 53: 45-61.
  • 9Goldfar D, dnani A I. A numerically stable dual method for solving strictly convex quadratic program[J]. Mathematical Programming, 1983, 27:1-33.
  • 10林诒勋.排序问题中的凸性[J].数学进展,1997,26(4):289-300. 被引量:1

共引文献6

同被引文献17

  • 1陈荣军,陈峰,唐国春.单台机器总完工时间排序问题的反问题[J].上海第二工业大学学报,2005,22(2):1-7. 被引量:5
  • 2于辉,陈剑,于刚.回购契约下供应链对突发事件的协调应对[J].系统工程理论与实践,2005,25(8):38-43. 被引量:166
  • 3陈荣军.单台机器总完工时间随机排序问题的反问题[J].常州工学院学报,2006,19(6):1-5. 被引量:1
  • 4胡祥培,丁秋雷,张漪,王旭坪.干扰管理研究评述[J].管理科学,2007,20(2):2-8. 被引量:41
  • 5Pinedo M. Scheduling theory, algorithm and systems [ M ]. Third edition. New York : Springer Science + Business Media, LLC, 2008: 33-57.
  • 6Li J Q, Mirchandani P B, Borenstein D. Real-time vehicle rerouting problems with time windows[ J]. European Journal of Operational Research, 2009, 194 (3) : 711-727.
  • 7Lee CY, Yu G. Parallel machine scheduling under potential disruption[ J]. Optimization Letters. 2008, 2( 1 ) : 27-37.
  • 8Yu G, Arguello M, Song G, et al. A new era for crew recovery at continental airlines[ J]. Interfaces, 2003, 33 (1) : 5-22.
  • 9Qi x T, Bard J F, Yu G. Supply chain coordination with demand disruption[J]. Omega, 2004, 32(4) : 301-312.
  • 10Mansouri S A, Hendizadeh S H, Salmasi N. Bi-criteria scheduling of a two-machine flowshop with sequence-dependent setup times [ J ]. International Journal of Advanced Manufacturing Technology, 2009, 40 ( 1 I-12) : 1216-226.

引证文献2

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部