期刊文献+

求解指数效用函数的叉熵方法 被引量:1

The Approach of Exponential Utility Function Based on Cross-Entropy
下载PDF
导出
摘要 本文提出了一种计算指数效用函数的最小叉熵方法。该方法以Buhlmann的经济均衡模型为基础,根据最小叉熵原理得到风险的均衡价格密度,并将这个密度函数应用到Buhlmann的效用函数理论中,证明了当市场达到均衡状态时的效用函数为指数效用函数。该方法意义明确,形式清晰。 This paper proposes a minimum cross-entropy approach to calculate the exponential utility function. Based on Buhlmann' s economic equilibrium model, the equilibrium price density is derived by applying the minimum cross-entropy principle. Then the density function is used in Buhlmann' s utility theory, and we prove that the utility function is the exponential utility function when the market arrives at the equilibrium state. This new method has explicit meaning and form.
出处 《运筹与管理》 CSCD 北大核心 2009年第2期120-124,共5页 Operations Research and Management Science
基金 国家自然科学基金资助项目(10572031) 国家自然科学基金重大项目(10590354)
关键词 最小叉熵 叉熵变换 均衡价格密度 效用函数 minimum cross-entropy cross-entropy transform equilibrium price density utility function
  • 相关文献

参考文献8

  • 1Hans Buhlmann. An economic premium principle[ J]. Astin Bulletin, 1980,11: 52-60.
  • 2Hans Buhlmann. The general economic premium principle[J]. Astin Bulletin, 1984, 14: 13-21.
  • 3Amir Darooneh H. Utility function from maximum entropy principle[J]. Entropy, 2006, 8: 18-24.
  • 4Shaun Wang S. Equilibrium pricing transforms: new results using buhlmann' s economic model[J]. Astin Bulletin, 2003, 33: 57 -73.
  • 5Amir Darooneh H. Non-life insurance pricing: multi-agent model[J]. Eur, Phys. J, 2004, 42: 119-122.
  • 6Amir Darooneh H. Physical premium principle: a new way for insurance pricing[ J]. Entropy, 2005, 7: 97-107.
  • 7Mark Reesor R. Relative entropy, distortion, the bootstrap and risk[ D]. Canada: University of Waterloo, 2001.
  • 8唐启鹤,胡太忠,成世学.现代精算风险理论[M].北京:科学出版社,2005.

共引文献2

同被引文献7

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部