期刊文献+

恰含两个非线性Monolith特征标的有限群 被引量:3

Finite Groups with Exactly Two Nonlinear Monolithic Characters
下载PDF
导出
摘要 对恰含两个非线性monolith特征标的有限群作分类研究,证明这种群共分9类,并给出了它们的群论结构. The monolithic characters influence mostly the structure of a finite group by the studies of I. Isaacs, Y. Berkovich and others. In this article we prove that the groups which have exactly two nonlinear monolith characters are classified into nine classes, and their group structures are described.
出处 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第4期11-15,共5页 Journal of Southwest University(Natural Science Edition)
基金 国家自然科学基金资助项目(10471112)
关键词 monolith特征标 可解群 不可约特征标 monolithic character solvable group irreducible character
  • 相关文献

参考文献9

  • 1Isaacs I M. Character Theory of Finite Groups [M]. New York: Academic Press, 1976.
  • 2Gorenstein D. Finite Groups [M].New York: Chelsea Publishing Company, 1980.
  • 3Berkovich Y. On Isaacs' Three Character Degrees Sheorem [J].Pro Amer Math Soc, 1997, 125(3): 669 --677.
  • 4Isaacs I M, Knutson G. Irreducible Character Degrees and Normal Subgroups [J]. J Algebra, .1998, 199: 302- 326.
  • 5Zhang Guangxiang. Finite Groups with Exactly Two Nonlinar Irreducible Characters [J].Chinese Journal of Contemporary Mathematics, 1992, 17(2): 175 -184.
  • 6刘晓华,任永才.一类DMD-群[J].四川大学学报(自然科学版),2004,41(4):736-739. 被引量:2
  • 7Yakov Berkovich I M. Isaacs and Lev Kazarin. Groups with Distinct Monolithic Character Degrees [J].J Algebra, 1999, 216: 448--480.
  • 8徐海静,张广祥,童殷.Monolithic特征标的零点与可解群的导长[J].西南大学学报(自然科学版),2008,30(6):1-3. 被引量:1
  • 9徐海静,张广祥.特征标表的零点分布与群的结构[J].西南师范大学学报(自然科学版),2006,31(2):13-15. 被引量:11

二级参考文献18

共引文献10

同被引文献13

  • 1徐海静,张广祥.特征标表的零点分布与群的结构[J].西南师范大学学报(自然科学版),2006,31(2):13-15. 被引量:11
  • 2陈彦恒,曹洪平.各阶非平凡子群的个数为p+1的p-群的完全分类[J].西南大学学报(自然科学版),2007,29(2):11-14. 被引量:10
  • 3徐明曜.有限群导引[M].北京:科学出版社,1987.62.
  • 4徐明耀.有限群导引(上册)[M].北京:科学出版社,1993.
  • 5FEIT W, THOMPSON J G. Finite Groups Which Contain a Self-Centralizing Subgroup of Order 3 [J]. Nagoya Math, 1962, 21: 185-197.
  • 6ARAD Z, HERFORT W. Classification of Finite Groups with a CC-Subgroup [J]. Comm Algebra, 2004, 32(6): 2087-2098.
  • 7徐明曜.有限群导引[M]北京:科学出版社,2001.
  • 8W.Feit,J.G.Thompson. Finite groups which contain a self - centralizing subgroup of order 3[J].Nagoya Mathematical Journal,1962.185-197.
  • 9Ziv.Arad,W.Herfort. Classification of finite groups with a CC - subgroup[J].Communications in Algebra,2004,(06):2087-2098.
  • 10Hans Kurzweil Bernd Stellmacher;施武杰.有限群论导引[M]北京:科学出版社,2009.

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部