摘要
在凸度量空间内,研究了带误差的Ishikawa型迭代方法逼近有限一致拟-李卜希兹映象族的公共不动点.在一定条件下,给出了带误差的Ishikawa迭代序列收敛于有限一致拟-李卜希兹映象族的公共不动点的充要条件.
The purpose of this paper is to study some kind of Ishikawa type iterative scheme with errors to approximate a common fixed point of a finite family of uniformly quasi-Lipschitzianmappings in convex metric spaces. Under appropriate conditions, some convergence theorems are proved. The results presented in the paper generalize, improve and unify some recent results .
出处
《西南大学学报(自然科学版)》
CAS
CSCD
北大核心
2009年第4期25-29,共5页
Journal of Southwest University(Natural Science Edition)
基金
重庆市教委资助项目(KJ070514)
关键词
凸度量空间
渐近非扩张映象
渐近拟非扩张映象
有限一致拟-李卜希兹映象族
带误差的Ishikawa迭代方法
convex metric space
a finite family of uniformly quasi-Lipschitzian mapping
Ishikawa-type iterative scheme with errors
asymptotically nonexpansive mapping
asympfotically quasi-nonexpansive mapping