期刊文献+

有限一致拟-李卜希兹映象族公共不动点的逼近 被引量:6

On the Approximation Problem of Common Fixed Points for a Finite Family of Uniformly Quasi-Lipschitzian Mappings in Convex Metric Space
下载PDF
导出
摘要 在凸度量空间内,研究了带误差的Ishikawa型迭代方法逼近有限一致拟-李卜希兹映象族的公共不动点.在一定条件下,给出了带误差的Ishikawa迭代序列收敛于有限一致拟-李卜希兹映象族的公共不动点的充要条件. The purpose of this paper is to study some kind of Ishikawa type iterative scheme with errors to approximate a common fixed point of a finite family of uniformly quasi-Lipschitzianmappings in convex metric spaces. Under appropriate conditions, some convergence theorems are proved. The results presented in the paper generalize, improve and unify some recent results .
出处 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第4期25-29,共5页 Journal of Southwest University(Natural Science Edition)
基金 重庆市教委资助项目(KJ070514)
关键词 凸度量空间 渐近非扩张映象 渐近拟非扩张映象 有限一致拟-李卜希兹映象族 带误差的Ishikawa迭代方法 convex metric space a finite family of uniformly quasi-Lipschitzian mapping Ishikawa-type iterative scheme with errors asymptotically nonexpansive mapping asympfotically quasi-nonexpansive mapping
  • 相关文献

参考文献14

  • 1Takahashi W. A Convexity in Metric Space and Nonexpansive Mappings[J]. Kodai Math Sem Rep, 1970, 22:142 -- 149.
  • 2Kirk W A, Krasnoselskii's. Iteration Process in Hyperbolic Space [J]. Numer Funet Anal Optimiz, 1982, 4:371 --381.
  • 3Goebel K, Kirk W A. Iteration Processes for Nonexpansive Mappings [J].Contemporary Math, 1983, 21 : 115 - 123.
  • 4Petryshyn W V, Williamson T E. Strong and Weak Convergence of the Sequence of the Successive Approximations for Quasi-Nonexpansive Mappings [J].J Math Anal Appl, 1973, 43:459- 497.
  • 5Ghosh M K, Debnath L. Convergence of tshikawa Iterates of Quasi-Nonexpansive Wappings[J]. J Math Anal Appl, 1997, 207: 96-103.
  • 6Liu Qihou. Iterative Sequence for Asymptotically Quasi-Nonexpansive Mappings [J]. J Math Anal Appl, 2001, 259: 1-7.
  • 7Liu Qihou. Iterative Sequence for Asymptotically Quasi-Nonexpansive Mappings with Error Member [J]. J Math Anal Appl, 2001, 259: 18--24.
  • 8Liu Qihou. herative Sequence for Asymptotically Quasi-Nonexpansive Mappings with an Error Member of Uniform Convex Banach Space [J]. J Math Anal Appl, 2002, 266: 468--471.
  • 9Tian Y X. Convergence of an Ishikawa Type Iterative Scheme for Asymptotically Quasi-Nonexpansive Mappings [J]. Comput Math Appl, 2005, 49:1905--1912.
  • 10Wang C, Liu L W. Convergence Theorems for Fixed Points of Uniformly Quasi-Lipschitzian Mappings in Convex Metric Space[J]. Nonlinear Annal, 2009, 70:2067--2071.

二级参考文献15

共引文献6

同被引文献41

  • 1Iemoto S, Takahashi W. Approximating Common Fixed Points of Nonexpansive Mappings and Nonspreading Mappings in a Hilbert Space[J].Nonlinear Anal, 2009, 71: 2082-2089.
  • 2Nakajo K, Takahashi W. Strong Convergence Theorems for Nonexpansive Mappings and Nonexpansive Semigroups [J]. J Math Anal Appl, 2003, 279: 372-379.
  • 3Marino G, Xu H K. Weak and Strong Convergence Theorems for Strict Pseudo-contractions in Hilbert Spaces [J]. J Math Anal Appl, 2007, 329:336 - 346.
  • 4Zhou H Y, Convergence Theorems of Fixed Points for κ-strict Pseudo-contractions in Hilbert Spaces [J]. Nonlinear Anal, 2008, 69:456-462.
  • 5Takahashi W, Nonlinear Functional Analysis [M]. Yokohama: Yokohama Publishers, 2000.
  • 6Xu H K. Viscosity Approximation Methods for Nonexpansive Mappings [J].J Math Anal Appl, 2004, 298:279 -,91.
  • 7Takahashi W. Non-linear Functional Analysis-Fixed Point Theory and its Applications [M]. Yokohama: Yokohama Publishers Ine, 2000.
  • 8Song Y. A New Sufficient Condition for the Strong Convergence of Halpern Type Iterations [J]. Appl Math Comput, 2008, 198:721-728.
  • 9Chang S S, Joseph Lee H W, Chan C K. On Reich's Strong Convergence Theorem for Asymptotically Nonexpansive Mappings in Banach Spaces [J].Nonlinear Anal, 2007, 66: 2364- 2374.
  • 10Yao Y, Chen R, Yao J C. Strong Convergence and Certain Conditions for Modified Mann Iteration [J']. Nonlinear Analysis, 2008, 68: 1687- 1693.

引证文献6

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部