期刊文献+

基于人类视觉系统的图像感知哈希算法 被引量:27

Image Perceptual Hashing Based on Human Visual System
下载PDF
导出
摘要 图像感知哈希(Perceptual Hashing)是一门新兴技术,它通过对图像感知信息的简短摘要和基于摘要的匹配,来支持图像的认证和识别,具有广泛的应用前景.目前关于图像感知哈希的研究主要集中在图像特征的提取上,但是特征的选择缺乏对人眼视觉特性的考虑.本文从不同的侧面提出几种基于人类视觉系统的图像感知哈希算法.通过这几种算法之间和已有传统算法之间的测试比较,结果表明考虑了人眼视觉特性的图像感知哈希算法在鲁棒性和区分性上能够得到提高,算法给出的感知距离度量更符合人的主观感受. As an emerging technology,Image Perceptual Hashing(IPH),is becoming a new hotspot and have broad potential applications.Through extracting the digest of perceptual information of an image and matching based on the digest,IPH supports the identification and authentication of images.Currently,the IPH algorithms in the literature are mainly focused on the image feature extraction,but they do not introduce sufficient perceptual factors.In this paper,several new IPH algorithms based on HVS are proposed. Experiments test and compare the proposed algorithms. The results suggest our methods take more perception information into account and have better performance on robustness and discriminability.
出处 《电子学报》 EI CAS CSCD 北大核心 2008年第B12期30-34,共5页 Acta Electronica Sinica
基金 国家自然科学基金(No.60832010 No.60671064 No.60703011) 国家863计划(No.2007AA01Z458) 高等学校博士学科专项科研基金(No.20070213047)
关键词 人类视觉系统(HVS) 感知哈希 图像认证 图像质量评价 human visual system(HVS) perceptual hashing image authentication image quality assessment
  • 相关文献

参考文献9

  • 1J Fridrich, M Goljan. Robust hash functions for digital water- marking[ A]. Proceedings. International Conference on Information Technology: Coding and Computing [ C]. Las Vegas:IEEE,2000. 178 - 183.
  • 2V Monga, B L Evans. Robust perceptual image hashing using feature points [ A ]. Proceedings of IEEE International Conference on Image Processing (ICIP) [ C ]. Singapore: IEEE, 2004. 1 : 677 - 680.
  • 3S S Kozat, R Venkatesan, M K Mihcak. Robust perceptual image hashing via matrix invariants [ A ]. Proceedings of International Conference on Image Processing (ICIP) [ C ]. Singapore: IEEE,, 2004.5 : 3443 - 3446.
  • 4R Venkatesan, S M Koon, et al. Robust image hashing. Proceedings of IEEE International Conference of Image Processing (ICIP) [ C ]. Vancouver: IEEE, 2000.3 : 664 - 666.
  • 5A De Angelis,A Moschitta,F Russo,P Carbone. Image quality assessment: an overview and some metrological considerations [ A]. International Workshop on Advanced Methods for Uncertainty Estimation in Measurement[ C ]. Trento: IEEE, 2007.47 - 52.
  • 6H R Sheikh, A C Bovik. Image information and visual quality [ J ]. IEEE Transactions on Image Processing, 2006,15 (2) : 430 -444.
  • 7Andrew B Watson. DCT quantization matrices visually optimized for individual images[A]. The Intemational Society for Optical Engineering [C]. California: SPIE, 1993.1913 : 202 - 216.
  • 8Wang Zhou, A C Bovik, H R Sheikh, et al. Image quality assessment: from error visibility to structural similarity [ J ]. IEEE. Transactions on Image Processing,2004,13(4) :600- 612.
  • 9Allan G Weber. The USC-SIPI Image Database: Version 5 [ DB/OL]. http://sipi, usc. edu/database.

同被引文献173

引证文献27

二级引证文献77

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部