期刊文献+

基于SVM及电容层析成像的两相流流型识别 被引量:30

Identification of two-phase flow regime based on support vector machine and electrical capacitance tomography technique
下载PDF
导出
摘要 两相流测量中,流型的准确识别是流动参数准确测量的基础。电容层析成像(ECT)技术是自20世纪80年代发展起来的新型检测技术,可用于两相流/多相流流型识别及固相浓度测量。支持向量机是一种基于统计学习理论的机器学习算法,即使在小样本情况下也能得到很好的分类效果。应用ECT系统测量的包含流型信息的电容测量数据,采用支持向量机算法进行流型识别,对4种典型空气-油两相流流型识别分别进行了仿真和静态实验。结果表明,该方法辨识速度快,可准确地识别典型的流型。 The correct identification of two-phase flow regime is the basis for the accurate measurement of other flow parameters in two-phase flow measurement. Electrical capacitance tomography (ECT) is a new measurement technology. It is often used to identify two-phase/multi-phase flow regime and investigate the distribution of solids. Support vector machine (SVM) is a machine-learning algorithm based on statistical learning theory (SLT), which has desirable classification ability with fewer training samples. This paper provides a new approach for flow regime identification. The capacitance measurement data obtained from ECT system contain flow regime information. Using these data and SVM method, simulation and static experiments were carried out for typical flow regimes. The results show that this method is fast in speed and can identify these flow regimes correctly.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2009年第4期812-816,共5页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(60532020,60820106002)资助项目
关键词 两相流 流型识别 支持向量机 电容层析成像 two-phase flow flow regime identification support vector machine electrical capacitance tomography
  • 相关文献

参考文献10

二级参考文献46

  • 1冀海峰,黄志尧,王保良,李海青.气液两相流系统的小波软测量技术[J].仪器仪表学报,2001,22(z2):13-14. 被引量:7
  • 2VapnikVN 张学工译.统计学到理论的本质[M].清华大学出版社,2000..
  • 3王广军,李少华,李岩峰,章臣樾.强制流动蒸发系统水动力特性的数值分析方法及应用[J].中国电机工程学报,1997,17(1):13-17. 被引量:20
  • 4Vapnik V N. Statiscal learning theory[M]. John Viley & Sons, Inc. , N. Y. , 1998.
  • 5Weston J, Watkins C. Multi-class support vector machines[R]. Royal Holloway College. Tech Rep:CSD-TR-98-04,1998.
  • 6Kressel U. Pairwise classification and support vector machines[M]. In B. Scholkopf, ed. Advances in Kernel Methods Support Vector Learning, MIT Press, Cambrifge, Massachusetts, 1999, chapter 15, 255-268.
  • 7Platt J, Cristianini N, Shawe-Taylor J. Large margin DAGs for multiclass classification[M]. In.. Advances in Neural Information Processing Systems 12. Massachusetts: MIT Press, 2000.
  • 8Poyhonen S, Negrea M, Arkkio A, Hyotyniemi H, Koivo H. Suppor Vector Classification for Fault Diagnostics of an Electrical Machine[C]. Proc. of Int. Conf. On Signal processing (ICSP'02), Beijing-Chlna, August 26-30, 2002.
  • 9黄志尧,东北大学学报,2000年,21卷,增刊,143页
  • 10王保良,东北大学学报,2000年,21卷,增刊,177页

共引文献159

同被引文献263

引证文献30

二级引证文献121

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部