期刊文献+

MV代数的度量化研究及其在Lukasiewicz命题逻辑中的应用 被引量:9

Metrization on MV-Algebras and Its Application in Lukasiewicz Propositional Logic
原文传递
导出
摘要 设M是一个MV代数,Ω是从M到标准MV代数[0,1]_(MV)的全体同态之集,μ是Ω上的概率测度.基于μ在M中引入了元素(称之为元素命题)的真度概念以及元素命题间的相似度概念,并由此在M上建立了度量结构,从而在更广泛的框架下建立了度量理论.本文结果是已有的命题逻辑中逻辑公式的真度理论的一般化和代数化,思想也可应用到其他多值逻辑代数中. Let M be an MV-algebra, Ω the set of all homomorphisms from M into the standard MV-algebra [0, 1] MY, and μ a probability measure on Ω. By means of the μ we introduce the concepts of truth degrees of elements of M (called element propositions) and similarity degrees between element propositions, and then define therefrom a metric on M. Thus we establish the metric theory in much wider framework. The results of the paper are generalization and algebraic counterpart of the existing theory of truth degrees of fomulas in propositional logics. The idea of the paper can be adapted to other many-valued logical algebras.
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2009年第3期501-514,共14页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(10331010,10771129) 陕西师范大学优秀博士学位论文基金资助项目
关键词 MV代数 Lukasiewicz命题逻辑 真度 MV-algebra Lukasiewicz propositional logic truth degree
  • 相关文献

参考文献7

二级参考文献23

  • 1吴洪博.Theory of generalized tautology in revised Kleene system[J].Science China(Technological Sciences),2001,44(3):233-238. 被引量:15
  • 2[1]Rosser, J. B. , Turquette, A. R. , Many-Valued Logics, Amsterdam: North-Holland, 1952.
  • 3[2]Ying, M. S. , A new approach for fuzzy topology (Ⅰ) (Ⅱ) (Ⅲ), Fuzzy Sets and Systems, 1991, 39(3): 303-321; 1992,47(2): 221 232; 1993, 55(2): 193-207.
  • 4[3]Ying, M. S., Fuzzifying topology based on complete residuated lattice-valued logic (Ⅰ), Fuzzy Sets and Systems, 1993, 56(3): 337-373.
  • 5[4]Pavelka, J., On fuzzy logic Ⅰ, Ⅱ, Ⅲ, Zeitschr f math Logik und Grundlagen d Math, 1979, 25: 45-52; 119-134;447-464.
  • 6[5]Wang, G. J. , Non-classical Mathematical Logics and Approximate Reasoning (in Chinese), Beijing: Science Press, 2000,207-274.
  • 7[6]Ying, M. S., Automata theory based on quantum logic. (Ⅰ), Int. J. Theor. Phys., 2000, 39(4): 981-991.
  • 8[7]Ying, M. S. , Automata theory based on quantum logic. (Ⅱ), Int. J. Theor. Phys. , 2000, 39(11 ): 2545-2557.
  • 9[8]Wee, W. G., On generalizations of adaptive algorithm and application of the fuzzy sets concept to pattern classification, Ph.D. Thesis, Purdue University, 1967.
  • 10[9]Kandel, A., Lee, S. C., Fuzzy Switching and Automata: Theory and Applications, London: Grane Russak, 1980, 171-262.

共引文献152

同被引文献105

引证文献9

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部