期刊文献+

套代数中的极大的n-幂零Lie理想 被引量:1

Maximal n-Nilpotent Lie Ideals of Nest Algebras
原文传递
导出
摘要 设N是Hilbert空间H上的套,AlgN是相应的套代数。本文证明了L是AlgN中的极大的n-幂零Lie理想当且仅当N中存在有限子套{0=p0〈p1〈…〈pn=1},使得L=p1AlgNp1/1+…+Pp-1AlgNp1/p-1+C1. Abstract Let N be a nest of Hilbert space H, and let Alg N be the nest Algebra corresponding to the nest N. In this paper, it is proved that L is a maximal n-nilpotent Lie ideal of AlgN if and only if there is a finite subnest {0=p0〈p1〈…〈pn=1} of N such that L=p1AlgNp1/1+…+Pp-1AlgNp1/p-1+C1.
机构地区 青岛大学数学系
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2009年第3期587-594,共8页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(10675086) 山东省基金资助项目(Y2006A04)
关键词 套代数 套的序同态 n-幂零理想 nest algerba order homomorphism of nest n-nilpotent ideal
  • 相关文献

参考文献1

二级参考文献10

  • 1Davidson, K. R., Nest Algebras, Pitman Research Notesin Mathematics Series 191, Longman Scientific and Technical,Burnt Mill Harlow,Essex,UK, 1988.
  • 2Erdos,J. A. ,Operators of finite rank in nest algebras,J. London Math. Soc., 1968,43:391-397.
  • 3Erdos ,J. A. ,Power ,S. C. ,Weakly closed ideals of nest algebras ,J. Operator Theory, 1982,7 : 19-351.
  • 4Hopenswasser,A. ,Completely isometric maps and triangular operatvr algebras,Proc. London Math.Soc. ,1975,25(3) .96-114.
  • 5Larson,D. R. ,Nest algebras and similaring transforms,Ann, of Math. ,1985,121:409-427.
  • 6Lu Fangyan,Lu Shijie,Finite rank operators in some ideals of nest algebras,Acta Math. Sinica, 1998,41:113-118.
  • 7Orr,J. L. ,Triangular algebras and ideals of nest algebras,Bull. Amer. Math. Soc. (N. S. ), 1990,23 : 461-467.
  • 8Orr,J. L. ,The maximal ideals of a nest algebra ,J. Funct. Anal. , 1994,124 :119-134.
  • 9Ringrose,J. R. ,On some algebras of operators,Proc. London Math. Soc. , 1965,15(3):61-83.
  • 10Ringrose,J. R. , On some algebras of operators Ⅱ,Proc. London Math. Soc. , 1966, 16:385-402.

共引文献1

同被引文献11

  • 1Molnar L. On isomorphisms of standard operator algebras[J]. Stud Math, 2000, 142,295 -302.
  • 2Lu F. Jordan triple maps[J]. Linear Algebra Appl, 2003, 375,311 -317.
  • 3Li P, Lu F. Additivity of Jordan elementary maps on nest algebras[J]. Linear Algebra Appl, 2005,400,327- 338.
  • 4Li P, Jing W. Jordan elementary maps on rings[J]. Linear Algebra Appl, 2004, 382:237 - 245.
  • 5Martindale Ⅲ W S. When are multiplicative mappings additive[J]. Proc Amer Math Soc, 1969, 21, 695 -698.
  • 6Ling Z, Lu F. Jordan maps of nest algebras[J]. Linear Algebra Appl, 2004, 387,361 -368.
  • 7Cheung W S. Mappings on triangular algebras[,D]. PhD dissertation, U. Vic.
  • 8Cheung W S. Commuting maps of triangular algebras[J]. J London Math Soc, 2001, 63,117 - 127.
  • 9J.E. Humphreys. Introduction to Lie Algebras and Representation Theory[M]. The United States of America:Spring-Verlag, 1972.
  • 10JiPeisheng.LieIdealsofAtomicCSLSubalgebrasinFactor[J].数学进展,2007,36,371-378.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部