期刊文献+

基于改进Gauss-Newton的电容层析成像图像重建算法 被引量:32

A Novel Gauss-Newton Image Reconstruction Algorithm for Electrical Capacitance Tomography System
下载PDF
导出
摘要 针对电容层析成像技术中的"软场"效应和病态问题,在分析Gauss-Newton算法基本原理的基础上,提出了一种基于Gauss-Newton新的电容层析成像算法,采用奇异值分解定理对算法的稳定性进行了证明.在此基础上探讨了ECT应用该算法的可行性,算法满足收敛条件且重建图像误差小.仿真和实验结果表明,该算法和LBP、Landweber和共轭梯度算法相比,算法兼备成像质量高、稳定性好等优点,为ECT图像重建算法的研究提供了一个新的思路. To solve the "soft-field" nature and the ill-posed problem in electrical capacitance tomography technology, a novel image reconstruction algorithm for electrical capacitance tomography is presented. According to the characteristic of the inverse problems of ECT the Gauss-Newton algorithm is improved on the basis of analyzing mechanism of the algorithm,and the stabiliza- tion of the algorithm is proved via singular value decomposition principle. The feasibility of using this algorithm for ECT problems is also discussed. It shows that it is easy to meet the convergence condition and error of image reconstruction is small. Experimental results and simulation data indicate that the algorithm can provide high quality images and favorable stabilization compared with LBP, Landweber and conjugate gradient algorithms and this new algorithm presents a feasible and effective way to research on image reconstruction algorithm for Electrical Capacitance Tomography System.
机构地区 哈尔滨理工大学
出处 《电子学报》 EI CAS CSCD 北大核心 2009年第4期739-743,共5页 Acta Electronica Sinica
基金 国家自然科学基金(No.60572153) 高等学校博士学科点专项科研基金(No.200802140001) 教育部春晖计划(No.Z2007-1-15013) 黑龙江省自然科学基金(No.F200609)
关键词 电容层析成像 图像重建 迭代算法 Gauss-Newton electrical capacitance tomography image reconstruction iterative algorithm Gauss-Newton
  • 相关文献

参考文献11

  • 1Loser T, Wajman R, Mewes D. Electrical capactrical tomography image reconstruction along electrical field lines[ J ]. Measurement Science and Technology,2001, (12) : 1083 - 1091.
  • 2Xie C G,Plaskowski,Beck M S. 8-electode capacitance system for two-component flow identification [ J ]. Tomographic flow imaging, IEE Proc A, 1989; 136(4) : 173 - 190.
  • 3Warsito W, Fan L S. Measurement of real-time flow structures in gas-liquid and gas-liquid-solid flow systems using electrical capacitance tomography(ECT)[ J]. Chemical Eagineering Science, 2001,56(6) : 6455 - 6462.
  • 4W q Yang. Modeling of capacitance tomography sensors[ J]. IEE Proc. Sci. Meas. Technol, 1997,144:203 - 220.
  • 5K L Ostrowski, S P Luke, R A Williams.Simulation of the performance of electrical capacitance tomography for muasurement of dense phase pneumatic conveying[ J]. Chemical Engineering Journal, 1997, (6) :8197 - 8205.
  • 6B T Hjertaker. Static characterization of a dual sensor flow imaging system[ J]. Flow Measurement and Instrumentation, 1998,9:183 - 191.
  • 7Liu S,Fu L, Yang W Q. Optimization of an Iterative Im-age Reconstruction Algorithm for Electrical Capacitance Tomography Mea[ J]. Science and Technology, 1999,10:L37 - L39.
  • 8Yang W Q, Peng L H. Image reconstruction algorithms for electrical capacitance tomography [ J ]. Meas Sci Technol, 2003,14:R1 - R3.
  • 9王化祥,朱学明,张立峰.用于电容层析成像技术的共轭梯度算法[J].天津大学学报(自然科学与工程技术版),2005,38(1):1-4. 被引量:38
  • 10Liu S,Fu L, Yang W Q. Prior-online iteration for image reconstruction with electrical capacitance tomography [ J ]. IEE Proc-sci. Meas. Technol, 2004,151(3) : 195 - 200.

二级参考文献9

  • 1蔡芹,马宁,苏祥芳,王延平.电容层析成像的BP网络重建[J].武汉大学学报(自然科学版),1997,43(1):107-112. 被引量:10
  • 2南京大学数学系.计算数学专业:最优化方法[M].北京:科学出版社,1978..
  • 3Xie Chenggang, Huang Songming, Hoyle B S, et al. Electrical capacitance tomography for flow imaging:System model for development of image reconstruction algorithms and design of primal" sensors [ J ]. IEEE Proc G, 1992, 139 ( 1 ) :89--98.
  • 4Yang Wuqiang, Peng Lihui. Image reconstruction algorithms for electrical capacitance tomography [J]. Measurement Science and Technology,2003, 14 : 1-13.
  • 5Liu Shi, Fu Li, Yang Wuqiang. Optimization of an iterative image reconstruction algorithm for electrical capacitance tomography[ J ]. Measure Science and Technology, 1999,10 :37--39.
  • 6潘正君 康立山 等.演化计算[M].北京:清华大学出版社,1999..
  • 7魏颖 王师 赵进创 等.电阻层析成像(ERT)图像重建算法的研究[J].东北大学学报,2000,21(1):185-188.
  • 8肖化,胡广莉,何惠玲,保宗悌.基于分组 BP 神经网络的两相流电容层析技术[J].计量学报,1998,19(3):207-211. 被引量:4
  • 9周健,隋子阳,王学祥.一种改进的最近邻聚类算法[J].山东建材学院学报,1999,13(2):122-124. 被引量:7

共引文献54

同被引文献269

引证文献32

二级引证文献166

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部