期刊文献+

采用非监督得分规整和因子分析的说话人确认 被引量:1

Speaker Verification Based on Unsupervised Normalization and Factor Analysis
下载PDF
导出
摘要 在文本无关的说话人确认中,规整算法能够有效地调整测试得分的分布.另外,利用前面已经得到的测试语句的得分来调整规整的参数可以取得更好的效果,这种规整叫做非监督得分规整.在本文中,借用开发集得分来建立说话人和冒认者得分的两个先验高斯分布函数,在实际的测试中,利用最大后验概率准则来对规整的模型参数进行调整.在采用因子分析的情况下,在NIST2006说话人识别测试1conv4w-1conv4w数据库上,能够取得等错误率5.26%. In the text-independent speaker verification, the normalization algorithm can adjust the score dislribution. The pre- vious test scores can be used to update the parameters of the normalization, which is defined as unsupervised score normalization in this paper. The scores distributions of the target and impostor in the development corpus are set up as a prior, and the parameters of normalization are updated using the maximum a posterior(MAP)algorithm in each test process. In the NIST 2006 speaker recognition evaluation(SRE)1 conv4w-1 conv4w corpus, the equal error rate(EER)of the system based on the factor analysis and unsupervised score normalization is 5.26 %.
出处 《电子学报》 EI CAS CSCD 北大核心 2009年第4期776-779,共4页 Acta Electronica Sinica
基金 微软基金(No.07122803) 中国科技大学青年教师基金
关键词 说话人确认 联合因子分析 非监督得分规整 speaker verification joint factor analysis unsupervised score normalization
  • 相关文献

参考文献10

  • 1NIST. The NIST Year 2006 Speaker Recognition Evaluation Plan[ OL]. http://www. nist. gov/speech /tests/spk/2006/ sre-06_ evalplan-v9. pdf.
  • 2C Vair, D Colibro, F Castaldo, et al. Loquendo-politecnico di Torino' s 2006 NIST speaker recognition evaluation system [ A]. Proceedings of INTERSPEECH [ C ]. Antwerp, Belgium, 2007.1238 - 1241.
  • 3A Pretil,J F Bonastrel,D Matrouf. Confidence measure based unsupervised target model adaptation for speaker verification [A]. Proceedings of INTERSPEECH [ C] .Antwerp, Belgium, 2007.754 - 757.
  • 4P Mat ejka, L Burget, P Schwarz, O Glembek, et al. STBU system for the NIST 2006 speaker recognition evaluation[ A]. Proceedings of International Conference on Acoustics, Speech, and Signal Processing (ICASSP) [ C ]. Honolulu, Hawaii, USA, 2007,4:221 - 224.
  • 5D A Reynolds, T F Quatieri, R B Dunn. Speaker verification using adapted Gaussian mixture models[ J]. Digital Signal Processing, 2000,10( 1 - 3) : 19 - 41.
  • 6P Kenny, G Boulianne, P OueUet, P Dumouchel. Speaker and session variability in GMM-based speaker verification[ J]. Transactions on Audio,Speech and Language Processing,2007, 15(4) : 1448 - 1460.
  • 7R Vogt, B Baker, S Sridharan. Modeling session variability in text-independent speaker verification[ A]. Proceedings of INTERSPEECH[ C]. Lisbon, Portugal, 2005.3117 - 3120.
  • 8Frederic Bimbot, Jean-Francois Bonastre. A tutorial on text-independent speaker verification [ J ]. EURASIP Jounlal on Applied Signal Processing, 2004, (4) :430 - 451.
  • 9W M Campbell, D E Sturim, D A Reynolds, et al. SVM based speaker verification using a GMM supervector kernel and NAP variability compensation[ A]. Proceedings of International Conference on Acoustics, Speech, and Signal Processing(ICASSP) [C]. Toulouse,France: IEEE. Press,2006,1:97- 100.
  • 10Fabio Castaldo, Daniele Colibro, Emanuele Dalmasso. Compensation of nuisance factors for speaker and language recognition[ J]. IEEE. Transactions on Audio,Speech and Language Processing, 2007,15(7) : 1969 - 1978.

同被引文献17

  • 1包永强,赵力,邹采荣.采用归一化补偿变换的与文本无关的说话人识别[J].声学学报,2006,31(1):55-60. 被引量:13
  • 2Kinnunen T, Li H Z. An overview of text-independent speaker recognition: from features to supervectors. Speech Communication, 2010; 52(1): 12--40.
  • 3Reynolds D A, Rose R C. Robust text-independent speaker identification using gaussian mixture models. IEEE Transactions on Speech and Audio Processing, 1995; 3(1): 72- 83.
  • 4Reynolds D A, Quatieri T F, Dunn R B. Speaker verification using adapted Gaussian mixture models. Digital Signal Processing, 2000; 10:19-41.
  • 5Sachin S K, Nicolas S, Martin G, Elizabeth S, Andreas S, Luciana F, Tobias B. The SRI NIST 2008 speaker recognition evaluation system. Proceedings of the 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, 2009:4205 4208.
  • 6Campbell W M, Sturim D E, Reynolds D A. Support vector machines using GMM supervectors for speaker verification. IEEE Signal Processing Letters, 2006; 13(5): 308--311.
  • 7Bilmes J A. A gentle tutorial of the EM algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models. Technical Report 1CSI-TR- 97-021, 1997.
  • 8Kenny P, Boulianne G, Ouellet P, Dumouchel P. Joint factor analysis versus eigenchannels in speaker recognition. IEEE Transactions on Audio, Speech and Language Processing, 2007; 15(4): 1435--1447.
  • 9Kenny P, Boulianne G, Ouellet P, Dumouchel P. Speaker and session variability in GMM-based speaker verification. IEEE Transactions on Audio, Speech and Language Processing, 2007; 15(4): 1448--1460.
  • 10Kenny P, Ouellet P, Dehak N, Gupta V, Dumouchel P. A study of inter-speaker variability in speaker verification. IEEE Transactions on Audio, Speech and Language Processing, 2008; 16(5): 980- 988.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部