期刊文献+

求解多目标投资组合优化模型的遗传算法 被引量:2

A genetic algorithm for solving multi-objective portfolio selection optimization problem
下载PDF
导出
摘要 针对考虑最小交易量、交易费用,以及单项目最大投资上限约束的多目标投资组合模型,对目标函数添加惩罚函数项来处理约束条件的方法。本文通过对交叉算子、变异算子的改进,设计了一种遗传算法进行求解。实验算例表明,该算法是有效的。 For solving a multi-objective portfolio selection optimization problem with minimum transaction lots, transaction costs and upper limit on the maximum amount of invested capital in any security, used increasing penalty term in objective to due with the subjects. Improving the crossover operator, the mutation operator, presented a genetic algorithm based on integer encoding. It is show by the numerical test that the proposed algorithm is efficient to solve the multi-objective portfolio selection optimization problem.
作者 王怀柱
出处 《信息化纵横》 2009年第7期67-69,共3页
关键词 投资组合 多目标 遗传算法 异常变异 portfolio selection multi-objective genetic algorithm abnormal mutation
  • 相关文献

参考文献7

  • 1MARKOWITZ H. Portfolio selection[J]. Journal of Finance, 1952, 7(1):77-91.
  • 2KELLERER H, MANSINI R, SPERANZA M G. On selecting a portfolio with fixed costs ang minimum lots[J].Annals of Oprations Research,2000,99(3):287-30d.
  • 3FERNANDEZ A, GOMEZ S. Portfolio selection using neural networks. Computer & Operations Research.2007;(34):1177-1191.
  • 4CHANG T J, MEADE N, BEASLEY J, et al. Heuristics for cardinality constrained portfolio optimization.Computer & Operations Research, 2000(27): 1271-1302.
  • 5赵娟,李科学.有交易费的证券组合投资优化模型[J].华北水利水电学院学报,2006,27(2):110-112. 被引量:2
  • 6林丹,李小明,王萍.用遗传算法求解改进的投资组合模型[J].系统工程,2005,23(8):68-72. 被引量:13
  • 7DUAN Yu Hong, GAO Yue Lin, LI Ji Min. A new adaptive particle swarm optimization algorithm with dynamically changing inertia weight. Intelligent Information Management Systems and Technologies, 2006, 2(2): 245-255.

二级参考文献13

  • 1Markowitz H. Portfolio selection[J]. Journal of Finance, 1952,7 (1) : 77- 91.
  • 2Yoshimoto A. The mean-variance approach to portfolio optimization subject to transaction costs[J]. Journal of Operations Research Society of Japan, 1996, 39 ( 1 ) : 99- 117.
  • 3Kellerer H, Mansini R, Speranza M G. On selecting a portfolio with fixed costs and minimum lots[J]. Annals of Operations Research, 2000,99 (3) : 287 - 304.
  • 4Masini R, Speranza M G. Heuristic algorithms for a portfolio selection problem with minimum transaction lots[J].European Journal of Operational Research, 1999,114(2) :219-233.
  • 5Konno H, Wijayanayake A. Portfolio optimization problems under concave transaction costs and minimal transaction unit constraints [J].Mathematical Programming, 2001, 89 (3) : 233- 250.
  • 6Goldberg D E. Genetic algorithms in search,optimization and machine learning[M]. New York: Addison-Wesley,1989.
  • 7Xia Y,Liu B,Wang S Y. A model of portfolio selection with order of expected returns[J]. Computers and Operations Research ,2000,27(4) :409- 422.
  • 8Chang T J, Meade N, Beasley J E, et al. Heuristics for cardinality constrained portfolio optimization[J]. Computers and Operations Research, 2000, 27(13) : 1271- 1302.
  • 9Vedarajan G, Chan L C, Goldberg D. Investment portfolio optimization using genetic algorithms[A]. Gonnet G H,Panario D, Viola A. Lecture notes in computer science(vol. 1776)[C]. Berlin: Springer-Verlag,2000:203-211.
  • 10Baeck T, Fogel D B, Michalewicz Z. Handbook of evolutionary computation[M]. Oxford :Oxford University Press,1997.

共引文献13

同被引文献116

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部