期刊文献+

聚磺基水杨酸/碳纳米管修饰电极在抗坏血酸共存时测定多巴胺 被引量:5

Determination of dopamine in the presence of ascorbic acid using poly(sulfosalicylic acid)/multi-wall carbon nanotube film modified electrode
下载PDF
导出
摘要 研究了聚磺基水杨酸/多壁碳纳米管修饰玻碳电极的制备及多巴胺在此修饰电极上的电化学行为,讨论了修饰条件、扫速、溶液pH以及抗坏血酸的干扰对多巴胺在这种复合物电极上响应的影响。在pH7.4磷酸盐缓冲溶液中,在1.0×10^-3mol/L抗坏血酸共存的条件下,多巴胺氧化峰电流与其浓度在5×10^-7—10^-4mol/L范围内分段呈线性关系,检出限为1.0×10^-7mol/L。结果表明:聚磺基水杨酸/多壁碳纳米管修饰电极结合了多壁碳纳米管灵敏度高和聚磺基水杨酸选择性好的优点,可用于抗坏血酸共存条件下多巴胺的测定。 Modification of a glassy carbon electrode by poly(sulfosalicylic acid)/multi-wall carbon nanotube (PSA/ MWCNT) film and its application for determination of dopamine (DA) in the presence of ascorbic acid (AA) are investigated. The effects of modification conditions, scan rate, pH value and interference on the response of the composite modified electrode toward DA were discussed. In phosphate-buffered saline solutions (PBS) of pH 7.4, the oxidation current increased linearly with two concentration intervals of DA in the range of 5.0×10^-7 to 1.0× 10^-4mol/L with a detection limit of 1.0×10^-7 mol/L. This approach takes advantage of the excellent sensitivity and selectivity of PSA and MWCNT, which makes the PSA/MWNT modified electrode relatively potential for selective and sensitive determination of DA in the presence of AA.
出处 《分析试验室》 CAS CSCD 北大核心 2009年第5期6-10,共5页 Chinese Journal of Analysis Laboratory
基金 国家自然科学基金(20775088) 中国科学院生态环境中心环境化学与生态毒理学国家重点实验室基金(KF2008-06)项目资助
关键词 化学修饰电极 磺基水杨酸 碳纳米管 多巴胺 抗坏血酸 Multi-wall carbon nanotube Sulfosalicylic acid Dopamine Ascorbic acid Determination
  • 相关文献

参考文献32

  • 1Wightman R M, May L J, Michael A C. Anal Chem, 1998, 70:769.
  • 2Adams R N. Anal Chem, 1976, 48:1128.
  • 3Venton B J, Wightman R M. Anal Chem, 2003, 75 : 414A.
  • 4Phillips P E M, Stuber G D, Heien M L A Vet al. Nature, 2003, 422:614.
  • 5Micheal D J, Wightman R M. J Pharm Biomed Anal, 1999, 19:33.
  • 6Hawley M D, Tatawawadi S V, Piekarski S et al. J Chem Soc, 1967, 89:447.
  • 7Gonon F, Buda M, Cespuglio R et al. Nature, 1980, 286: 902.
  • 8Raj C R, Okajima T, Ohsaka T. J Electroanal Chem, 2003, 543 : 127.
  • 9Kang J W, Zhuo L Lu X Q, Wang x Q. J Solid State Electrochem, 2005, 9:114.
  • 10Niu L M, Luo H Q, Li N B. Archly der Pharmazie, 2006, 339(7): 356.

二级参考文献12

  • 1[1]Iijima S. Nature, 1991, 314: 56~58
  • 2[2]Li Q W, Wang Y M, Luo G A. Materials Science & Engineering C, 2000, 11: 71~74
  • 3[3]Li Q W, Luo G A. Anal. Chim. Acta, 2000, 379: 134~137
  • 4[4]Campbell J K, Sun L, Crooks R M. J. Am. Chem. Soc., 1999, 121: 3779~3780
  • 5[5]Davis J J,Coles R J,Hill H A O. Journal of Electroanalytical Chemistry, 1997,440: 279~282
  • 6[6]Davis J J,Green M L H,Hill H A O, Leung Y C, Sadler P J, Sloan J, Xavier A V, Tsang S C. Inorganica Chimica Acta, 1998, 272: 261~266
  • 7[7]Liu C Y, Bard A J, Wudl F, Weitz I, Heath J R. Electrochem. Solid State Lett., 1999, 2: 577~578
  • 8[9]Luo H X, Shi Z J, Li N Q, GU Z N, Zhuang Q K. Anal. Chem., 2001, 73:915~920
  • 9[11]Wang Z H, Liu J, Liang Q L, Wang Y M, Luo G A. Analyst, 2002, 127(5): 653~658
  • 10[12]Wang Z H, Liang Q L, Liu J, Wang Y M, Luo G A. J. Electroanal. Chem., 2003, 540: 129~134

共引文献28

同被引文献84

引证文献5

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部