期刊文献+

4英寸VGFGaAs单晶生长的数值模拟与实验研究 被引量:11

Numerical Simulation and Experimental Study on 4″ VGF GaAs Crystal Growth
下载PDF
导出
摘要 利用数值模拟和实验相结合的方法,研究了4英寸VGF GaAs单晶的生长。首先基于炉体结构和所采用材料,建立一个和真实单晶生长系统接近的炉体模型。根据此模型,采用晶体生长模拟软件CrysMas计算得到整个炉体内的温度分布、晶体及熔体的温度梯度、界面位置等。通过对单晶生长不同时间点的模拟,制定了一套单晶的生长工艺。然后,严格遵循此工艺进行单晶生长实验。通过对实验和模拟结果的对比分析,建立了实验和数值模拟之间的联系,为进一步利用数值模拟指导晶体的实际生长提供了依据。最后,利用数值模拟研究了单晶生长中"边界效应",探讨了晶体生长过程中产生多晶的原因。 The growth of 4"GaAs crystal growth was studied by vertical gradient freezing (VGF) process with the aid of simulation and experiment. Firstly, a model-furnace was built, which based on the furnace structure and materials used. On the basis of the model, the distribution of temperature in the furnace, the gradient of temperature in melt and crystal, the position of interface were calculated with CrysMas special for simulation of the crystal growth. Moreover, a 4" VGF GaAs crystal growth process was established according to the simulation results at different time. Comparing experimental results with that of simulation, the relations of experiment and simulation were settled. Finally, the "interface effect" and the occurrence of polycrystalline during the VGF-GaAs crystal growth were discussed.
出处 《稀有金属》 EI CAS CSCD 北大核心 2009年第2期211-216,共6页 Chinese Journal of Rare Metals
基金 国家“863”高技术研究项目(2002AAF3102)资助
关键词 砷化镓 单晶 数值模拟 垂直梯度凝固 GaAs crystal numerical simulation vertical gradient freezing
  • 相关文献

参考文献15

  • 1Jordan A S, Monberg E M. Quasi-steady-state heat transfer/ thermal stress model for dislocation generation in vertical gradient freeze growth of GaAs [J]. J. Appl. Phys. , 1993, 73: 4016.
  • 2Vladimir Kalaev. Use of computer modeling for optimization of Cz Si growth : strategy and examples [ R ]. St. -Petersburg' s Group Ltd, 2008.
  • 3Weimann H, Amon J, Jung Th, Muller G. Numerical simulation of the growth of 2 ″ diameter GaAs crystals by the vertical gradient freeze technique [J]. J. Cryst. Growth,1997, 180: 560.
  • 4Amon J, Berwian P, Muller G. Computer-assisted growth of low-EPD GaAs with 3″ diameter by the vertical gradient-freeze technique [J]. J. Cryst. Growth, 1999,198/199: 361.
  • 5Muller G, Birkmann B. Optimization of VGF-growth of GaAs crystals by the aid of numerical modeling [ J]. J. Cryst. Growth, 2002, 237/239: 1745.
  • 6Amon J, Zemke D, Muller G. Growth of 2″ InP and GaAs crystals by the vertical gradient freeze (VGF) technique and characterization [J]. J. Cryst. Growth, 1996, 166: 646.
  • 7Yasunori Okano, Hiroki Kondo, Wataru Kishimoto, Li Lingzh, Dost Sadik. Experimental and numerical study of the VGF growth of CdTe crystal [ J ]. J. Cryst. Growth, 2002, 237/ 239: 1716.
  • 8Koai K, Sonnenberg K, Wenzl H. Influence of crucible support and radial heating on the interface shape during vertical Bridgman GaAs growth [J]. J. Cryst. Growth. 1994, 137: 59,
  • 9Kurz M, Pusztai A, Muller G. Development of a new powerful computer code CrysVUN + + especially designed for fast simulation of bulk crystal growth processes [ J ], J. Cryst. Growth, 1999, 198/199: 101.
  • 10Backofen R, Kurz M, MuUer G. Process modeling of the industrial VGF growth process using the software package CrysVUN + + [J]. J. Cryst. Growth, 2000, 211: 202.

二级参考文献13

  • 1Iles P A, Ho F. Technology challenges for space solar cells [J]. 24^th IEEE PVSC, 1994, (2): 1957.
  • 2Deshmukh M P, Nagaraju J. Measurement of silicon and GaAs/ Ge solar cell device parameters [J]. Solar Energy Materials and Solar Cells, 2005, 89(4) : 403.
  • 3Yang V K, Ting S M, Groenert M E. Comparison of luminescent efficiency of InGaAs quantum well structures grown on Si, GaAs, Ge, and SiGe virtual substrate [J ]. Journal of Applied Physics, 2003, 93(9): 5095.
  • 4Hudalt M K, Hardikar S, Modak P, Rao KSRK, Krupanidhi Sb. Comparative studies of Si-doped n-type MOVPE GaAs on Ge and GaAs substrates [J ]. Material Science and Engineering B, 1998, 55(1-2): 53.
  • 5Deduyn J, Dessein K, Flamand G, Mols Y, Poortmans J, Borghs G, Moevman I. Comparison of MOVPE grown GaAs solar cells using different substrates and group-V precursors [J]. J. Crystal Growth, 2003, 247(3-4): 237.
  • 6胡国元 韩兆忠.锗在空间太阳能电池中的应用.功能材料增刊,1998,10:752-752.
  • 7Mil M G, Vidskii, Bochkarev E P. Creation of defects during growth of semiconductors [J]. Journal of Crystal Growth, 1978, 44: 61.
  • 8Ben Depuydt, Antoan Theuwis, Igor Romandic. Germanium: From the first application of Czochralski crystal growth to large diameter dislocation-free wafers [J]. Materials Science in Semiconductor Processing, 2006, 9: 437.
  • 9Azoulay M, Gafni G. Seeded growth in a soft lined crucible: application to phosphorus doped optical germanium single crystals [J]. J.Crystal Growth, 1986, 79: 326.
  • 10余思明.半导体硅材料学[M].湖南:中南工业大学出版社,1992.195.

共引文献11

同被引文献134

引证文献11

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部