期刊文献+

基于子空间方法的精馏塔系统辨识建模研究 被引量:2

System Identification Modeling of Distillation Column Based on Subspace Method
下载PDF
导出
摘要 子空间辨识方法作为一种有效的针对多输入-多输出系统(MIMO)的辨识建模方法近年来受到广泛的重视。目前主要采用的子空间辨识算法只能适用于白噪声环境,而实际的工业现场数据很多是受到较大有色噪声干扰的。针对问题采用了一种新的子空间辨识算法,利用马尔可夫参数用于处理随机性部分,同时引入辅助变量用以去除噪声的干扰,能够适用于存在较大有色噪声干扰情况下的辨识建模,并可得到对象的无偏模型,建模的精度优于通常所采用的子空间辨识算法。通过对精馏塔仿真模型的辨识结果证明了该方法的可行性和有效性,以及在实际工业过程对象建模中良好的应用前景。 Subspace identification method as an effective identification modeling way for multi input and output system has drawn much attention recently. The mainly used subspace identification algorithms are effective only in white noise,while the most industrial field data are impacted by colorednoise. To solve this problem, a new subspace identification algorithm is used in this paper, which uses Markov Parameters for stochastic part and adds instrumental variables to remove the effects of the unmeasured noise sources. This subspace identification algorithm is suited for the situation disturbed by colored - noise, and could obtain an unbiased model. The accuracy of model is better than that of the normally used subspace identification algorithm. The simulation results demonstrate the effectiveness and feasibility of the method.
出处 《计算机仿真》 CSCD 北大核心 2009年第4期109-112,共4页 Computer Simulation
关键词 子空间辨识 马尔可夫参数 辅助变量 精馏塔 Subspace identification Markov parameters Instrumental variables Distillation column
  • 相关文献

参考文献9

  • 1李幼凤,苏宏业,褚健.子空间模型辨识方法综述[J].化工学报,2006,57(3):473-479. 被引量:46
  • 2Van Oversehee, De Moor. Subspace Identification for Linear Systems : Theory - Implementation - Applications [ M ]. Dordrecht: Kluwer Academic Publishers, 1996.
  • 3张勇,杨慧中,丁锋.有色噪声干扰下的一种系统辨识方法[J].南京航空航天大学学报,2006,38(B07):167-171. 被引量:25
  • 4L C Nelson, J M Chui. Maciejowski Subspace Identification A Markov Parameter [ R ]. Technical Report CUED/F - INFENG/ TR. 337,1998 Cambridze University. 1998.
  • 5H Chen, J Maciejowski. Subspace Identification Method for Combined deterministic - stochastic bilinear systems [ C ]. America Control Conference, Chicago, U. S. A,1999.
  • 6朱豫才.过程控制的多变量系统辨识[M].长沙:国防科技大学出版社,2005.
  • 7M Viberg. Subspace - based methods for the identification of linear time - invariant systems [ J ]. Automatica, 1995.1835 - 1851.
  • 8M Verhaegen. Identification of the deterministic of MIMO state space models given in irmovations form from input - output data [ J]. Automatica, 1994. 61 - 74.
  • 9Jin Wang, S Joe Qin. A new subspace identification approach based on principal component analysis [ J ]. 2002, 12 : 841 855.

二级参考文献49

  • 1Favoreel W,De Moor B,Van Overschee P.Subspace state space system identification for industrial processes.Journal of Process Control,2000,10:149-155.
  • 2Jansson M,Wahlberg B.A linear regression approach to state-space subspace system identification.Signal Processing,1996,52:103-129.
  • 3Katayama T,Picci G.Realization of stochastic systems with exogenous inputs and subspace identification methods.Automatica,1999,35:1635-1652.
  • 4Wang J,Qin S J.A new subspace identification approach based on principle component analysis.Journal of Process Control,2002,12:841-855.
  • 5Huang B,Ding S X,Qin S J.Closed-loop subspace identification:an orthogonal projection approach.Journal of Process Control,2005,15:53-66.
  • 6De Cock K,De Moor B.Subspace identification methods[EB/OL].http://www.ece.sunysb.edu/~decock/subspace methods.
  • 7Viberg M.Subspace-based methods for the identification of linear time-invariant systems.Automatica,1995,31(12):1835-1851.
  • 8Van Overschee P,De Moor B.Subspace Identification for Linear Systems:Theory-Implementation -Applications.Dordrecht:Kluwer Academic Publishers,1996b.
  • 9Verhaegen M,Dewilde P.Subspace model identification(1):The output-error state-space model identification class of algorithms.International Journal of Control,1992a,56(5):1187-1210.
  • 10Verhaegen M,Dewilde P.Subspace model identification(2):Analysis of the elementary output-error state-space model identification algorithm.International Journal of Control,1992b,56(5):1211-1241.

共引文献90

同被引文献21

  • 1黎康,张洪华.基于高阶累积量的闭环子空间辨识算法研究[J].宇航学报,2005,26(4):415-419. 被引量:3
  • 2李幼凤,苏宏业,褚健.子空间模型辨识方法综述[J].化工学报,2006,57(3):473-479. 被引量:46
  • 3R E Bellman,L A Zadeh. Decision making in a fuzzy environment[J].{H}Management Science,1970.141-164.
  • 4H Tanaka,T Okuda. On fuzzy mathematical programming[J].Journal of cybernetic,1973.37-46.
  • 5Liang Tien-Fu. Applying fuzzy goal programming to project management decisions with multiple goals in uncertain environment[J].{H}Expert systems with application,2010.8499-8507.
  • 6Mariano Jimenez,Mar Arenas,Amelia Bilbao,M Victoria Rodriguez. Linear programming with fuzzy parameters:An interactive method resolution[J].{H}European Journal of Operational Research,2007.1599-1609.
  • 7Christer Carlsson,Robert Fuller. Optimization under fuzzy if-then rules[J].{H}Fuzzy Sets and Systems,2001.111-120.
  • 8De Souza,Alexandre Augusto Angelo. Optimization of capacitor allocation for operational planning of distribution networks using linear programming and Mamdani fuzzy inference system[A].2011.1-4.
  • 9L XWang,JM Mendel. Generating fuzzy rules by learning from examples[J].IEEE Transactions on System Man and Cybemetics,1992.1414-1427.
  • 10Qin S J.An overview of subspace identification[J].Computers and Chemical Engineering,2006,30(10/12):1502-1513.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部