期刊文献+

基于自适应蚁群算法的作业车间模糊调度研究 被引量:5

Study on Job Shop Fuzzy Scheduling Based on Adaptive Ant Colony Algorithm
下载PDF
导出
摘要 在研究不确定生产调度问题的基础上,针对具有模糊加工时间和模糊交货期的调度问题给出了作业车间模糊调度模型,用三角模糊数表示模糊加工时间,梯形模糊数表示模糊交货期,以交货期平均满意度最大作为调度目标。针对模糊调度问题对基本蚁群算法作了改进,并给出了新的状态转移规则,同时采用自适应信息素更新策略使算法能快速跳出局部收敛,进行仿真结果验证了自适应蚁群算法求解作业车间模糊调度的有效性。 On the basis of studying uncertainties in the production scheduling problem, we present the Job shop fuzzy scheduling model for the scheduling problem with fuzzy processing time and fuzzy due date. In the present model, fuzzy processing time and fuzzy due date are denoted by triangular fuzzy numbers and Trapezoid fuzzy numbers respectively, and the scheduling goal is the greatest satisfaction of average delivery. To address the fuzzy scheduling problem, we have improved the basic ant colony algorithm and present a new state transition rules, at the same time use adaptive pheromone updating strategy that can quickly get out of part convergence. The simulation results show that adaptive ant colony algorithm is effective to solve Job Shop fuzzy scheduling problem.
出处 《计算机仿真》 CSCD 北大核心 2009年第4期244-248,共5页 Computer Simulation
关键词 作业车间调度 不确定性 模糊调度问题 自适应蚁群算法 Job shop scheduling uncertainty Fuzzy scheduling problem Adaptive ant colony algorithm
  • 相关文献

参考文献9

  • 1H Ishii, M Tada, T Masuda. Two scheduling problems with fuzzy due - dates [ J ]. Fuzzy Sets and Systems, 1992,46 ( 3 ) : 339 - 347.
  • 2T Murata, M Gen, H Ishibuchi. Multi - objective scheduling with fuzzy due - date[ J]. Computers & Industrial Engineering, 1998, 35(3) :439 -442.
  • 3F T Lin. A job shop scheduling problem with fuzzy processing times [ C ]. Proceedings of international Conference on Computational Science Part, Berhn Heidelberg: Springer, 2001. 409 -418.
  • 4S Masatoshi, M Tetsuya. An efficient genetic algorithm for job - shop scheduling problems with fuzzy processing time and fuzzy due - date [ J]. Computers & Industrial Engineering, 1999, 36 (4) : 325 - 344.
  • 5M Sakawa, R Kubota. Fuzzy programming for multi - objective job shop scheduling with fuzzy processing time and fuzzy due date through genetic algorithm [ J]. European Journal of Operational Research, 2000, (120) :393 -407.
  • 6耿兆强,邹益仁.基于遗传算法的作业车间模糊调度问题的研究[J].计算机集成制造系统-CIMS,2002,8(8):616-620. 被引量:32
  • 7陈知美,顾幸生.基于蚁群算法的不确定条件下的Job Shop调度[J].山东大学学报(工学版),2005,35(4):74-79. 被引量:8
  • 8汪向利,王万良,徐新黎.基于自适应蚁群算法的Job-shop调度方法及其仿真研究[J].系统仿真技术,2005,1(3):141-146. 被引量:6
  • 9M Zlochin and M Dorigo. Model - based search for combinatorial optimization: A comparative study[ C ]. In Proceedings of the Sixth International Conference on Parallel Problem Solving from Nature, PPSN' 2002,2002.

二级参考文献13

  • 1王常青,操云甫,戴国忠.用双向收敛蚁群算法解作业车间调度问题[J].计算机集成制造系统,2004,10(7):820-824. 被引量:31
  • 2张超勇,饶运清,李培根,刘向军.求解作业车间调度问题的一种改进遗传算法[J].计算机集成制造系统,2004,10(8):966-970. 被引量:53
  • 3[4]Zhou Pin,Li Xiao-Ping,Zhang Hong-Fang.Proceedings of the World Congress on Intelligent Control and Automation (WCICA),v 4,WCICA 2004-Fifth World Congress on Intelligent Control and Automation.Conference Proceedings,2004,pp 2899-2903.
  • 4[5]Ventresca,Mario (Department of Computing Science,University of Guelph),Ombuki,Proceedings of the Eighth IASTED International Conference on Artificial Intelligence and Soft Computing,Proceedings of the Eighth IASTED International Conference On Artificial Intelligence and Soft Computing,2004,pp 28-34.
  • 5[6]Croce F,Tadei R,Volta G.A genetic algorithm for the job shop problem[J].Computers and Operations Research,1995,22,15-24.
  • 6[10]Dorigo M.ACO algorithms for the traveling salesman problem[A].In:Marco Engineering and Computer Science:Recent Advances in Genetic Algorithms,Evolution Strategies,Evolutionary Programming,Genetic Programming and Industrial Application[C].John Wiley&Sons,1999,1-23.
  • 7YAGER R R. A procedure for ordering fuzzy subsets of the unit interval[J]. Information Science, 1981, 24:143-161.
  • 8周明 孙树栋.遗传算法原理及应用[M].北京:国防工业出版社,2001..
  • 9顾幸生.不确定性条件下的生产调度[J].华东理工大学学报(自然科学版),2000,26(5):441-446. 被引量:58
  • 10忻斌健,汪镭,吴启迪.蚁群算法的研究现状和应用及蚂蚁智能体的硬件实现[J].同济大学学报(自然科学版),2002,30(1):82-87. 被引量:23

共引文献42

同被引文献41

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部