期刊文献+

一种新型空间梁单元及其在梁杆结构稳定分析中的应用 被引量:9

A SPATIAL BEAM ELEMENT AND ITS APPLICATION TO BUCKLING ANALYSIS FOR FRAMED STRUCTURES
原文传递
导出
摘要 推导了一种新型的空间两结点非线性Euler-Bernoulli梁单元。使用传统有限元方法的插值理论构造了空间三结点Euler-Bernoulli梁单元的位移场:二次Lagrange插值函数建立单元的扭转和轴向位移场;五次Hermite插值函数建立单元的横向位移场,然后推导了此空间三结点梁单元的切线刚度矩阵,随后使用静力凝聚方法消除三结点梁单元内部结点的自由度,从而得到一种新型的空间两结点Euler-Bernoulli梁单元。通过结构稳定算例证明:一个新型梁单元的计算精度相当于3个―4个传统非线性两结点梁单元,每根杆件使用一个单元离散就可得到非常准确的临界载荷。 A spatial two-node nonlinear Euler-Bernoulli beam element is derived. The displacement fields of the spatial three-node beam element are constructed using the interpolation theory of the conventional finite element method. The quadratic Lagrange interpolation polynomial is used for the torsional and axial displacement fields and the quintic Hermite interpolation polynomial for the transverse displacement fields. Then the linear and geometric stiffness matrices of the three-node beam element are derived from the displacement fields. A three-dimensional two-node beam element is developed by eliminating the degrees of freedom of the interior node of the three-node element using the static condensation method. The results of several structural buckling examples show that only one of the new beam element has the same accuracy with that of 3-4 conventional two-node beam elements and the critical force with high accuracy can be obtained even each beam is discretized into one element.
作者 夏拥军 缪谦
出处 《工程力学》 EI CSCD 北大核心 2009年第4期86-91,共6页 Engineering Mechanics
关键词 梁杆结构 结构稳定 有限单元法 空间三结点梁单元 静力凝聚 framed structures structural buckling the finite element method spatial three-node beam element static condensation
  • 相关文献

参考文献8

二级参考文献25

  • 1吴秀水.考虑剪切变形的薄壁杆件分析[J].工程力学,1993,10(1):76-84. 被引量:15
  • 2欧阳煜.空间框架体系弹性稳定分析[J].华侨大学学报(自然科学版),1994,15(3):293-296. 被引量:2
  • 3Usami T., Koh, S. R. Large displacement theory of thin-walled curved members and its application to lateral-torsional buckling analysis of circular arches[J]. Int. J. Solids Structures, 1980, 16: 71-95.
  • 4Yang Y B. Static stability of curved thin-walled beams [J]. J. Engrg. Mech., ASCE, 1986, 112(4): 821-841.
  • 5Vlasov V Z. Thin-Walled Elastic Beams [M]. Washington D. C.: National Science Foundation, 1961.
  • 6Kang Y J, Yoo C H. Thin-walled curved beams. I: Formulation of nonlinear equations[J]. J Engrg. Mech., ASCE, 1994, 120(10): 2072-2101.
  • 7Kenny S, Pegg N, Taheri F, Dynamic Elastic Buckling of a Slender Beam with Geometric Imperfections Subject to an Axial Impulse [J]. Finite Elements in Analysis and Design, 2000(35):227-246.
  • 8Hu N, Hu B, Yan B, et al. Two Kinds of C^0-type Elements for Buckling Analysis of Thin - walled Curved Beams [J]. Comput. Methods Appl. Mech.Engrg, 1999(171):87-108.
  • 9Kim MY, Kim N, Kim SB. Spatial Stability of Shear Deformable Curved Beams with Non- symmetric Thin - walled Sections. Ⅰ: Stability Formulation and Closed - form Solutions [J]. Computers and Structures, 2005(83):2525-2541.
  • 10Kim MY, Kim N, Kim SB. Spatial Stability of Shear Deformable Curved Beams with Non- symmetric Thin- walled Sections. II:F. E. Solutions and Parametric Study [J]. Computers and Structures, 2005(83):2542-2558.

共引文献21

同被引文献67

引证文献9

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部