期刊文献+

基于粗集与数据融合的结构损伤识别方法 被引量:8

STRUCTURAL DAMAGE IDENTIFICATION METHOD BASED ON ROUGH SET AND DATA FUSION
原文传递
导出
摘要 为了有效地利用结构健康监测系统冗余、互补的信息进行结构健康状况评估,该文提出了一种将粗集、数据融合和概率神经网络(PNN)有机地结合在一起的损伤识别新方法。它先用粗集进行属性约简来降低数据的空间维数,然后运用PNN进行融合计算来处理冗余、不确定信息,最后进行融合决策和损伤识别。在粗集属性约简过程中,提出了运用K-均值聚类的方法进行数据离散的处理方法。为了验证所提方法的有效性,对2个数值算例的多种损伤模式进行了识别,并与没有经过粗集处理的PNN损伤识别方法进行了比较。研究发现,该文所提方法不仅可以降低数据的空间维数,而且具有很高的损伤识别精度。 In order to make full use of the redundant and complementary information and to assess the structural health states from a structural health monitoring system, a new damage identification method is proposed by integrating with rough set, data fusion and probabilistic neural network (PNN). In this method, rough set is used to reduce attributes so as to decrease spatial dimensions of data firstly, then PNN is utilized to fuse redundant and uncertain information and fusion decision-making and damage identification results are made. It is noteworthy that K-means clustering was employed to discrete data during the attributes reduction. To validate the efficiency of the proposed method, multi-damage patterns from two numerical examples were identified finally, and a comparison was made between the proposed method and a PNN classifier without data processing by rough set. The results show that the proposed method can not only reduce spatial dimension of data, but also have good damage identification accuracy.
作者 姜绍飞 姚娟
出处 《工程力学》 EI CSCD 北大核心 2009年第4期207-213,共7页 Engineering Mechanics
基金 国家自然科学基金项目(50408033 50878057) 辽宁优秀人才计划项目(RC-05-16) 福建高校优秀人才计划项目(2007) 教育部重点和福建教育厅重点项目(208064)
关键词 粗集:损伤识别 属性约简 概率神经网络 数据融合 rough set damage identification attributes reduction probabilistic neural network data fusion
  • 相关文献

参考文献9

  • 1Doebling S W, Farrar C R. The state of the art in structural identification of constructed facilities [R]. Los Alamos National Laboratory Report, Los Alamos, USA, 1999.
  • 2Ou J P, Li H. The art-in-the-art and practice of structural health monitoring for civil infrastructures in the mainland of China [C]//Ou J P, Li H, Duan Z D. Structural Health Monitoring and Intelligent Infrastructure. London: Talor & Francis, 2005: 69-88.
  • 3Hall D L. Mathematical techniques in multi-sensor data fusion [M]. Boston: Artech House, USA, 1992.
  • 4郭惠勇,张陵,蒋健.不同信息融合方法在结构损伤识别上的应用和分析[J].工程力学,2006,23(1):28-32. 被引量:11
  • 5Jiang Shaofei, Zhang Chunming, Koh C G. Structural damage detection by integrating data fusion and probabilistic neural network [J]. Advances in Structural Engineering, 2006, 9(4): 445-458.
  • 6Pawlak Z. Rough sets [J]. International Journal of Computer and Information Science, 1982, 11(5): 341- 356.
  • 7Specht D F. Probabilistic neural networks [J]. International Journal of Neural Networks, 1990, 3: 109- 118.
  • 8郭小荟,马小平.基于粗糙集的故障诊断特征提取[J].计算机工程与应用,2007,43(1):221-224. 被引量:20
  • 9葛继科 余建桥.改进的尽均值聚类算法.计算机科学,2003,31:254-256.

二级参考文献21

  • 1肖云魁,李世义,王建新,杨万成,曹亚娟.以粗糙集近似逼近理论提取发动机振动故障特征[J].振动.测试与诊断,2004,24(4):262-265. 被引量:7
  • 2Hearn G, Testa R B. Modal analysis for damage detection in structures [J]. Journal of Structural Engineering, 1991,117: 3042-3063.
  • 3Salawu O S. Detection of structural damage through changes in frequencies: a review [J]. Engineering Structures, 1997, 19(9): 718-723.
  • 4Shi Z Y, Law S S and Zhang L M. Optimum sensor placement for structural damage detection [J]. Journal of Engineering Mechanics, 2000, 126(11): 1173-1179.
  • 5H Dyckhoff and W Pedrycz. Generalized means of model of compensative connectives [J]. Fuzzy Sets and Syst.,1984, 14(1): 27-36.
  • 6Buede D. M. and Girardi P. A. Target identification comparison of Bayesian and Dempster-Shafer multisensor fusion [J]. IEEE Transaction on Systems,Man, and Cybernetic-Part A: Systems and Humans, 1997,27: 569-577.
  • 7飞思科技产品研发中心.MatLab6.5辅助神经网络分析与设计[M].电子工业出版社,2004..
  • 8徐章遂 房立清 王希武 等.故障信息诊断原理及应用[M].北京:国防工业出版社,2001..
  • 9曾黄麟.粗集理论及其应用[M].重庆:重庆大学出版社,1998..
  • 10Pawlak Z.Rough set[J].International Journal of Computer and Information Science, 11:341-356.

共引文献29

同被引文献295

引证文献8

二级引证文献113

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部