期刊文献+

微型射流涡流发生器对边界层控制的数值研究 被引量:5

NUMERICAL INVESTIGATION OF BOUNDARY-LAYER CONTROL USING MINUTE JET VORTEX GENERATOR
原文传递
导出
摘要 运用数值方法,研究了展向分布的倾斜微型射流列对平板湍流边界层的作用,验证了利用微型射流列产生流向涡列来进行边界层控制的可行性,并分析了射流列各主要参数对控制作用的影响。当各射流同向倾斜时,顺射流倾斜方向流向涡控制作用逐个减弱;当相邻射流反向倾斜时,流向涡列在较大流向区域内对边界层形成较均匀的控制。随射流间距减小,流向涡列初始控制作用增强,但流向控制区域减小。在射流速度较小情况下,随射流速度提高,流向涡列控制作用增强;但过高的射流速度会导致流向涡列穿透边界层,反而导致控制作用下降。采用俯仰角较小(一般小于30°)、倾斜角较大(一般大于60°)的微型射流列对流向涡列控制作用有利。 The effect of spanwise-arranged inclined minute jets on the turbulent flat-plate boundary layer is investigated numerically, and it is confirmed that such minute jets can produce streamwise vortices to control boundary layer. The influences of jet primary parameters on the control action are analyzed. When the skew directions of jets are one, the control action of streamwise vortices weakens one by one along the skew direction; while the skew directions of neighbor jets are contrary, the control action is more uniform in a larger streamwise extent. With the jet spacing decreasing, the initial control action of streamwise vortices improves, but the control action fades more quickly downstream. Under lesser jet velocity, higher jet velocity brings better control action of streamwise vortices; while excessively high jet velocity leads poor control action instead due to streamwise vortices penetrating through boundary layer. Lower jet pitching angle (generally less than 30°) and higher jet skew angle (generally larger than 60°) are helpful to the control action of streamwise vortices.
作者 管小荣 徐诚
出处 《工程力学》 EI CSCD 北大核心 2009年第4期214-220,245,共8页 Engineering Mechanics
基金 南京理工大学博士研究生创新培养基金项目
关键词 微型射流涡流发生器 流动控制 数值研究 边界层 流向涡 minute jet vortex generator flow control numerical investigation boundary layer streamwise vortex
  • 相关文献

参考文献17

  • 1Wallis R A. A preliminary note on a modified type of air-jet for boundary-layer control [C]. London: Aeronautical Research Council, CP-513, 1960.
  • 2Pearcey H H. Shock induced separation and its prevention by design and boundary layer control [C]// Lachman G V. Boundary Layer and Flow Control. New York: Pergamon Press, 1961, 2: 1166-1344.
  • 3Zhang X, Collins M W. Measurements of a longitudinal vortex generated by a rectangular jet in a turbulent boundary layer [J]. Physics of Fluids, 1997, 9(6): 1665- 1673.
  • 4Zhang X, Collins M W. Nearfield evolution of a longitudinal vortex generated by an inclined jet in a turbulent boundary layer [J]. Journal of Fluids Engineering, 1997, 119(4): 934- 939.
  • 5Selby G V, Lin J C, Howard F G Control of low-speed turbulent separated flow using jet vortex generators [J]. Experiments in Fluids, 1992, 12(6): 394-400.
  • 6Henry F S, Pearcey H H. Numerical model of boundary-layer control using air-jet generated vortices [J]. AIAA Journal, 1994, 32(12): 2415-2425.
  • 7Zhang X. Co- and contrarotating streamwise vortices in a turbulent boundary layer [J]. Journal of Aircraft, 1995, 32(5): 1095-1101.
  • 8Johnston J P, Nishi M. Vortex generator jets-means for flow separation control [J]. AIAA Journal, 1990, 28(6): 989-994.
  • 9Compton D A, Johnston J P. Streamwise vortex production by pitched and skewed jets in a turbulent boundary layer [J]. AIAA Journal, 1992, 30(3): 640- 647.
  • 10Zhang X, Collins M W. Flow and heat transfer in a turbulent boundary layer through skewed and pitched jets [J]. AIAA Journal, 1993, 31(9): 1590- 1599.

同被引文献33

  • 1周冬,任建勋.射流纵向涡强化换热的数值模拟[J].清华大学学报(自然科学版),2004,44(11):1520-1523. 被引量:5
  • 2刘艳明,钟兢军,黄洪雁,王松涛,冯国泰.端壁翼刀控制压气机叶栅二次流的机理研究[J].空气动力学学报,2005,23(4):431-436. 被引量:9
  • 3黄军,王令,王秋旺,黄彦平.纵向涡发生器传热强化的研究进展[J].动力工程,2007,27(2):211-217. 被引量:15
  • 4Heiser W H, Pratt D T. Hypersonic air breathing propul- sion[M]. Washington, DC: American Institute of Aero- nautics and Astronautics, 1994: 3-26. (in Chinese).
  • 5Anderson B H, Tinapple J, Surber L. Optimal control of shock wave turbulent boundary layer interactions using mi- cro-array actuation[R]. AIAA-2006-3197, 2006.
  • 6Smith A N, Babinsky H, Dhanasekaran P C, et al. Com- putational investigation of groove controlled shock wave/boundary layer interaction[R]. AIAA-2003-0446, 2003.
  • 7Jaiman R K, Loth E, Dutton J C. Simulations of normal shock-wave/boundary-layer interaction control using me- sofiaps[J]. Journal of Propulsion and Power, 2003, 20(2) : 344-352.
  • 8Atkinson M D. Numerical investigation of a super-sonic in- let using bleed and micro ramps to control shock-wave/ boundary layer interactions[R]. AIAA-2007 0024, 2007.
  • 9Yuceil K, Valdivia A, Wagner J, et al. Active control of supersonic inlet unstart using vortex generator jets[R]. AIAA-2009-4022, 2009.
  • 10Lee S, Loth E. Supersonic boundary layer interactions with various micro-vortex generator geometries [ C]. AIAA- 2009-3712, 2009.

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部