期刊文献+

基于量子进化支持向量机的模拟电路故障诊断 被引量:1

Fault Diagnosis for Analog Circuits Based on SVM with Quantum-Inspired Evolutionary Algorithm
下载PDF
导出
摘要 基于量子进化算法的最小二乘小波支持向量机(LS-WSVM),设计了一种模拟电路故障诊断方法。将量子进化算法应用于多类LS-WSVM分类器来选取正规化参数和核参数,针对从测试点得到的各种故障状态下输出电压信号,采用小波提升变换对其进行分解获取多尺度的小波系数,对经处理的小波系数提取出故障特征量,以此作为样本训练多类LS-WSVM分类器来确定模拟电路故障诊断的模型。采用雷达扫描电路进行了仿真,结果表明,设计的模拟电路故障诊断方法效果良好。 Based on least squares wavelet support vector machines (LS-WSVM) with quantum-inspired evolutionary algorithm (QEA), a systematic approach for fault diagnosis of analog circuits was proposed. QEA was applied to select the optimal values of the regularization and kernel parameters of the multi-class LS-WSVM classifiers. Also output voltage signals under faulty conditions were obtained from analog circuit test points. Then wavelet coefficients of output voltage signals were gained by wavelet lifting decomposition, and faulty feature vectors were extracted from the coefficients. The faulty feature vectors were used to train the multi-class LS-WSVM classifiers, so the model of the analog circuit fault diagnosis system was built. The simulation results of the scout circuits of radar show the fault diagnosis method of using LS-WSVM with quantum-inspired evolutionary algorithm is effective.
出处 《系统仿真学报》 CAS CSCD 北大核心 2009年第9期2599-2602,2637,共5页 Journal of System Simulation
基金 国家自然科学基金(50804061) 国家863计划项目(2006AA04A123) 重庆市教委自然科学基金(KJ080509 KJ080514)
关键词 支持向量机 量子进化算法 小波提升变换 模拟电路 故障诊断 support vector machines quantum-inspired evolutionary algorithm wavelet lifting transform analog circuits fault diagnosis
  • 相关文献

参考文献16

  • 1吴小华,史忠科.三相SPWM逆变电源故障检测与诊断的仿真研究[J].系统仿真学报,2004,16(7):1512-1515. 被引量:22
  • 2王承,陈光,谢永乐.小波-神经网络在模拟电路故障诊断中的应用[J].系统仿真学报,2005,17(8):1936-1938. 被引量:34
  • 3Vapnik V. The Nature of Statistical Learning Theory [M]. 2nd edn, New York, USA: Springer-Verlag, 1998.
  • 4Carozza M, Rampone S. Towards an incremental SVM for regression [C]// Proceedings of International Joint Conference on Neural Networks. Como, Italy: IEEE, INNS, ENNS, 2000: 405-410.
  • 5Burges C. A tutorial on support vector machines for pattern recognition [J]. Data Mining Knowledge Discovery (S1384-5810), 1998, 2(2): 121-167.
  • 6Suykens J, Vandewalle J. Least squares support vector machine classifiers [J]. Neural Processing Letters (S1370-4621), 1999, 9(3): 293-300.
  • 7Suykens J, Van Gestel T, De Brabanter J, et al. Least squares support vector machines [M]. Singapore: World Scientific Press, 2002.
  • 8Zhang Li, Zhou Weida, Jiao Licheng. Wavelet support vector machine [J]. IEEE Trans. On Systems, Man, and Cybernetics-Part B: Cybernetics (S1083-4419), 2004, 34(1): 34-39.
  • 9Smola A, Scholkopf B, Muller K. The Connection between regularization operators and support vector kernels [J]. Neural Networks (S0893-6080), 1998, 11(3): 637-649.
  • 10Chapelle O, Vapnik V, Bousquet O, Mukherjee S. Choosing multiple parameters for support vector machines [J]. Machine Learning (S0885-6125), 2002, 46(1): 131-159.

二级参考文献20

  • 1[3]范影天,杨胜天等.MATLAB 仿真应用详解[M].北京:人民邮电出版社,2001.
  • 2[4]楼顺天,施阳.基于MATLAB 的系统的分析与设计-神经网络[M].西安:西安电子科技大学出版社,2000.
  • 3[1]Holland J H.Genetic algorithms and classifier systems:foundations and their applications [A].Proceedings of the Second Intemational Conference on Genetic Algorithms[C].1987:82-89.
  • 4[2]Rechenberg I.Evolutionsstrategie:Optimieung technischer Systeme nach PrinzISien der biologischen Evolution [M].Frommann-Holzboog,Stuttgart,1973.
  • 5[3]Klockgether J,Schwefel H P.Two-phase nozzle and hollow core jet experiments [A].In Elliott D.(eds.) Proc.11th Symp.Engineering Aspects of Magneto hydrodynamics [C].California Institute of Technology,Pasadena CA,March,1970,24-26:141-148.
  • 6[4]Fogel L J,Owens A J,Walsh M J.Artificial Intelligence Through Simulated Evolution [M].John Wiley,Chichester,UK,1966.
  • 7[5]Rechenberg I.Evolutionsstrategie:Optimierung technischer Systeme nach PrinzISien der biologischen Evolution [M].Frommann-Holzboog,Stuttgart,1973.
  • 8[6]Schwefel H P.Evolution and Optimum Seeking.Sixth Generation Computer Technology Series [M].Wiley,New York,1995.
  • 9[7]Back T,Hoffmeister F,Schwefel H P.A Survey of Evolution Strategies[A].In Belew R.and Booker L.(eds.) Proceedings of the Forth International Conference on Genetic Algorithms [C],Morgan Kaufmann Publishers,San Mateo,CA,1991:2-9.
  • 10[9]陈国良,王熙法,庄镇泉,王东生.遗传算法及其应用[M].人民邮电出版社,1997.

共引文献84

同被引文献11

  • 1杨淑媛,刘芳,焦李成.量子进化策略[J].电子学报,2001,29(z1):1873-1877. 被引量:32
  • 2覃延明,廖成,卫涛.基于微遗传算法的超宽带天线(阵)优化[J].西南交通大学学报,2007,42(1):40-43. 被引量:6
  • 3SAEID B, LADAN D, HELIA K, et al. Reliable com- munication in wireless body area sensor network for health monitoring[ J ]. International Journal of Computer Sci- ence, 2011 , 8(5) : 366-372.
  • 4LI H B, KOHNO R. Standardization on body area net- work and a prototype system based on UWB [ J ]. Journal of Medical Systems, 2011, 35 (5) : 1255-1263.
  • 5KAUR V. Performance evaluation of binary modulations through wireless body area network channel [ J ]. Interna- tional Journal of Computer Applications ,2011,18 ( 3 ) : 1-5.
  • 6ALVES T, POUSSOT B, LAHEURTE J M. PIFA-Top- Loaded-Monopole Antenna with diversity features for WBAN applications [ J ]. IEEE Antennas and Wireless Propagation Letters ,2011,10:693-696.
  • 7SUYKENS J, VAN GESTEL T, DE BRABANTER J, et al. Least squares support vector machines [ M ]. Singa- pore: World Scientific Press, 2002.
  • 8KUKHYUN H, JONGHWAN K. Quantum-inspired evo- lutionary algorithm for a class of combinatorial optimiza- tion [ J ]. IEEE Transactions on Evolutionary Computa- tion, 2002, 6(6) :580 -593.
  • 9褚庆昕,杨颖颖.一种小型平面陷波超宽带天线[J].华南理工大学学报(自然科学版),2008,36(9):77-80. 被引量:6
  • 10罗志勇,徐阳,刘星.基于改进T-Match技术的UHF频段RFID标签天线设计研究[J].重庆邮电大学学报(自然科学版),2012,24(6):756-759. 被引量:4

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部