期刊文献+

改进的CLPSO算法及对复杂组合函数的优化研究 被引量:4

Research of improvement CLPSO algorithm and its performance for optimization composition test functions
下载PDF
导出
摘要 全面学习微粒群优化算法使用所有其它粒子的历史最好信息来更新粒子速度的策略改进标准微粒群算法,虽然一定程度避免陷入早熟,然而也存在到算法后期收敛速度急剧变慢的问题。采取兼顾粒子搜索范围和收敛速度方法并引入自适应的策略监视算法过程,当算法陷入停滞,即重新初始化,更新粒子系统,用复杂组合测试函数进行测试,表明了改进算法的有效性。 Comprehensive learning particle swarm optimizer (CLPSO) is studied, which uses a learning strategy whereby all other particles' historical best information to update a particle's velocity, has improved the standard PSO and has avoided premature convergence to some extent. However, during the late stages of algorithm, the convergence speed has deeply declined. Particle's searching scope and convergence speed are taken into consideration and the self-adapting strategy is used to monitor the process of algorithm, once it comes to a standstill, the whole particle's system is reinitialized and updated. The effectiveness is demonstrated through several experiments that are performed using composition test functions.
出处 《计算机工程与设计》 CSCD 北大核心 2009年第8期1963-1965,1968,共4页 Computer Engineering and Design
基金 江苏技术师范学院青年科研基金项目(KYY06081)
关键词 优化 微粒群 CLPSO SA—CLPSO 组合测试函数 optimize PSO CLPSO SA-CLPSO composition testfunctions
  • 相关文献

参考文献10

  • 1Shi Y,Eberhart R C.A modified particle swarm optimizer[C].Piscataway,USA:IEEE Congr Evol Comput,1998:69-73.
  • 2Shi Y,Eberhart R C.Particle swarm optimization with fuzzy adaptive inertia weight[C].Indianapolis,USA:Proe Workshop Particle Swarm Optimization,2001:101-106.
  • 3Ratnaweera A,Haigamuge S,Watson H.Self-organizing hierarchical particle swarm optimizer with time varying accelerating coefficients[J].IEEE Trans Evol Comput,2004,8(6):240-255.
  • 4Clerc M,Kennedy J.The particle swarm-explosion,stability,and convergence in a multidimensional complex space[J].IEEE Trans Evol Comput,2002,6(1):58-73.
  • 5Mendes R,Kennedy J,Neves J.The fully informed particle swarm:Simpler,maybe better[J].IEEE Trans Evol Comput,2004,8(6):204-210.
  • 6Liang J J,Qin A K,Suganthan P N,ct al.Comprehensive learning particle swarm optimizer for global optimization of multimodal functions[J].lEEE Trans Evol Comput,2006,10(3):281-294.
  • 7Liang J J,Suganthan P N,Deb K.Novel composition test functions for numerical global optimization[C].Pasadena California,USA:IEEE Swarm Intelligence Symposium,2005:68-75.
  • 8Oscar Montiel,Oscar Castillo,Patricia Melin.Human evolutionary model:A new approach to optimization[J].Information Sciences,2007,177(10):2075-2098.
  • 9Eberhart R C,Kennedy J.A new optimizer using particle swarm thcory[C].Nagoya,Japan:Proc 6th lnt Symp Micromachine Human Sci,1995:39-43.
  • 10Kennedy J,Ebcrhart R C.Particle swarm optimization[C].Networks,USA:Proc IEEE Int Conf Neural,1995:1942-1948.

同被引文献38

  • 1谭皓,沈春林,李锦.混合粒子群算法在高维复杂函数寻优中的应用[J].系统工程与电子技术,2005,27(8):1471-1474. 被引量:13
  • 2Kennedy J, Eberhart R. Particle swarm optimization [ A ]. Proc of Intl Conf on Neural Networks [ C ]. Piscataway : IEEE Press, 1995 : 1942 - 1948.
  • 3Eberhart R,Kennedy J. A new optimizer using particle swarm theory [ A]. Proc of Intl Symposium on MicroMachine and Human Science [ C ]. Piscataway : IEEE Service Center, 1995 : 39 - 43.
  • 4Shi Y, Eberhart R C. A Modified Particle Swarm Optimization [ C ] Proceedings of the Congress on Evolutionary Computation, Piscataway. IEEE Press, 1998:69 - 73.
  • 5Shi Y, Eberhart R. C Fuzzy Adaptive Particle Swarm Optimization. Proc. IEEE Conf. on Evolutionary Computational. Seoul, Korea,2001 : 101 - 106.
  • 6K. E. Parsopoulos, M . N. Vrahatis. Recent Approaches to Global Optimization Problems through Particle Swarm Optimization. Nature Computing Kluwer Academic Publishers,2002:235 -306.
  • 7Huang Han, Qin Hu, Hao Zhifeng, et al. Example-based learning particle swarm optimization for continuous optimization [J]. Information Sciences, 2012, 182 (1): 125-138.
  • 8Zhao Jia, Lu Li, Sun Hui, et ak A novel two sub-swarms exchange particleswarm optimization based on multi-phases []J //IEEE In- ternational Conference on Granular Computing, 2010.
  • 9Hui Sun, Jun Li, Wen Lili, et al. A hybird particle swarm opti- mization for wireless sensor network coverage problem [J]. Sensor Letters, 2012, 10 (8): 1744-1750.
  • 10WANG Hui, SUN Hui, LI Changhe, et al. Diversity en- hanced particle swarm optimization with neighborhood search [J]. Information Sciences, 2013, 223: 119-135.

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部