期刊文献+

粒子群优化算法综述 被引量:87

Survey of particle swarm optimization algorithm
下载PDF
导出
摘要 为了进一步推广应用粒子群优化算法(PSO)并为深入研究该算法提供相关资料,在分析PSO基本原理和机制的基础上,从参数设置、收敛性、拓扑结构及与其它算法混合等方面对其发展历程和研究现状进行深入调查,论述了该算法的各种改进技术,并阐述了PSO在连续领域和离散领域的应用成果,最后对该算法未来发展趋势做出了展望。 In order to promote the applications of particle swarm optimization algorithm (PSO), and provides the relevant information for the further research on this algorithm, a review on the recent progress of PSO is given. Based on the introduces of PSO's basic principles and mechanism, a thorough investigation on the research progress of PSO is given in aspects ofparameter setting, convergence characteristic, topology, hybrid algorithm, and the applications in continuous and discrete domains. Finally, the future research issues of the PSO are given.
作者 黄少荣
出处 《计算机工程与设计》 CSCD 北大核心 2009年第8期1977-1980,共4页 Computer Engineering and Design
关键词 粒子群算法优化算法 参数设置 拓扑结构 混合算法 particle swarm optimization algorithm parameters setting topology hybrid algorithm
  • 相关文献

参考文献37

  • 1Kennedy J,Eberhart R C.Particle swarm optimization[C].Proc of the IEEE International Conference on Neural Networks.Piscataway,NJ:IEEE Service Center,1995:1942-1948.
  • 2Shi Yuhui,Eberhart R C.A modified particle swarm optimizer[C].Proc of the IEEE International Conference on Evolutionary Computation.Piscataway,NJ:IEEE Service Center,1998:69-73.
  • 3Chatterjee A,Siarry ENonlinear inertia weight variation for dynamic adaptation in particle swarm optimization[J].Computers and Operations Research,2006,33(3):859-871.
  • 4王俊伟,汪定伟.粒子群算法中惯性权重的实验与分析[J].系统工程学报,2005,20(2):194-198. 被引量:86
  • 5Zhan Z H,Zhang J.Adaptive particle swarm optimization[C].The Sixth International Conference on Ant Colony Optimization and Swarm Intelligence,2008:227-234.
  • 6Suganthan P N.Particle swarm optimizer with neighborhood operator[C].Proc of the Congress on Evolutionary Computation.Piscataway,NJ:IEEE Service Center,1999:1958-1962.
  • 7Ratnaweera A,Halgnmuge S K,Watson H.Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients[J].lEEE Transaction on Evolutionary Computation,2004,8(3):240-255.
  • 8彭宇,彭喜元,刘兆庆.微粒群算法参数效能的统计分析[J].电子学报,2004,32(2):209-213. 被引量:44
  • 9Zhan Z H,Xiao J,Zhang J,et al.Adaptive control of acceleration coefficients for particle swarm optimization based on clustering analysis[C].Singapore:Proceeding IEEE Congress on Evolutionary Computation,2007:3276-3282.
  • 10Clerc M,Kcnnedy J.The particle swarm-explosion,stability and convergence in a multidimensional complex space[J].IEEE Transaction on Evolutionary Computation,2002,6(2):58-73.

二级参考文献53

  • 1付国江,王少梅,刘舒燕,李宁.改进的速度变异粒子群算法[J].计算机工程与应用,2006,42(13):48-50. 被引量:15
  • 2陈君波,叶庆卫,周宇,曹小华.一种新的混合变异粒子群算法[J].计算机工程与应用,2007,43(7):59-61. 被引量:13
  • 3寇保华,杨涛,张晓今,张青斌,刘巍,葛健全.基于交叉变异的混合粒子群优化算法[J].计算机工程与应用,2007,43(17):85-88. 被引量:9
  • 4现代数学应用手册编委会.概率统计与随机过程卷(第一版)[M].北京:清华大学出版社,2000.276-302.
  • 5P N Suganthan. Particle swarm optimiser with neighbourhood operator. In: Proc of the Congress on Evolutionary Computation.Piscataway, NJ: IEEE Service Center, 1999. 1958~1962
  • 6E Ozcan, C Mohan. Particle swarm optimization: Surfing the waves. In: Proc of the Congress on Evolutionary Computation.Piscataway, NJ: IEEE Service Center, 1999. 1939~1944
  • 7M Clerc, J Kennedy. The particle swarm: Explosion, stability and convergence in a multi-dimensional complex space. IEEE Trans on Evolutionary Computation, 2002, 6(1): 58~73
  • 8F Solis, R Wets. Minimization by random search techniques.Mathematics of Operations Research, 1981, 6(1 ): 19~ 30
  • 9F Van den Bergh. An analysis of particle swarm optimizers: [ Ph D dissertation]. Pretoria: University of Pretoria, 2001
  • 10王凌.智能优化算法及其应用.北京:清华大学出版社,2001( Wang Ling. Intelligent Optimization Algorithms with Applications( in Chinese) . Beijing: Tsinghua University Press,2001)

共引文献548

同被引文献835

引证文献87

二级引证文献391

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部