期刊文献+

混合小波包与最佳基 被引量:3

Combined Wavelet Packets and Best Bases
下载PDF
导出
摘要 混合正交小波基是一种包含多个正交小波函数的正交基,本文在混合正交小波基的基础上构造出混合小波包.传统的小波包可以细化频谱窗口以解决正交小波基在高频区频谱局部性差的缺点,混合小波包不仅具有传统小波包的特点,而且可以在不失正交性的情况下改变小波包函数的形状,从而获得更好的细节匹配.小波包的分解可以在频域上进行,通过使用FFT而达到快速的目的. In this paper, the concept of CWP(combined wavelet packets) is proposed. CWP can be obtained from COWB(combined orthonormal wavelet bases) which is composed of several orthonormal wavelet bases having the same space structure in a multiresolution analysis view. Compared with traditional wavelet packets, CWP have not only better frequency localization, but also waveshape variation. The wavelet coefficients can be computed by a fast algorithm which computes in the frequency domain and uses FFT.
作者 陈玉宇 张钹
出处 《软件学报》 EI CSCD 北大核心 1998年第3期161-168,共8页 Journal of Software
基金 国家自然科学基金
关键词 混合正交小波基 小波包 最佳基 信号处理 算法 Multiresolution analysis, combined orthonormal wavelet basis, wavelet packets.
  • 相关文献

参考文献2

  • 1陈玉宇,IEEE TENCON’96,1996年
  • 2Zou Feng,IEEE Transactions on Signal Processing,1995年,43卷,12期,3036页

同被引文献21

  • 1杨守志,李尤发.具有高逼近阶和正则性的双向加细函数和双向小波[J].中国科学(A辑),2007,37(7):779-795. 被引量:30
  • 2Robertson D C,Camps O I.Wavelets and electromagnetic power system transients[J].IEEE Trans.on Power Delivery,1996,11(2):1050-1058.
  • 3Stéphane G Mallat.A wavelet tour of signal processing[M] New York:Academic Press,1999.
  • 4Mariantonia Cotronei,Laura B Montefusco,Luigia Puccio.Multiwavelet analysis and signal processing[J].IEEE Trans.on Circuits and Systems-II:Analog and digital signal processing,1998,45(8):970-987.
  • 5Chen Yuyu,Zhang Bo.Band-limited combined orthogonal wavelet bases[A] Australia IEEE TENCON'1996[C].New York:Academic Press,1996.593-597.
  • 6The MathWorks,Inc.Matlab 2007b Help Document[Z].2007.
  • 7Coifman R R,Wickerhauser M V.Entropy based algorithms for best basis selection[J].IEEE Trans.on Information Theory,1992,38(2):7l3-718.
  • 8Daubechies,W Sweldens.Factoring wavelet transforms into lifting steps[J].The Journal of Fourier Analysis and Applications,1996,4(3):247-269.
  • 9Salomon David.Data compression[M] Publishing House of Electronics Industry,2003.
  • 10Pascal Getreuer.Filter coefficients to popular wavelets[OL].http://scholar.google.cn,May 2006.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部