摘要
目的研究整函数族fλ(z)=zez+λ(λ∈C|)的动力系统.方法用Baker研究eλz所采用的方法.结果与结论设D^p={λ∈C||fλ(z)有一个p阶的吸性周期点},Dp表示D^p的一个连通分支.说明了D^1由无穷多个分支D1,D1k,k=0,±1,±2,…组成.对任意的p≥2和任意的D阶单位根η,根存在Dp切D1k于1+e2ηπi+2kπi.文中还证明了{fnpλ(-eλ-1),n∈NI}在Dp收敛于p阶吸性周期点z(λ),并且z(λ)关于λ解析,并证明了Dp是单连通的.
Aim To discuss the dynamics of the family f λ(z)=ze z+λ ,where λ∈C Methods To use the method of applied by Baker to his study of the family e λz Results and Conclusion Let D ^ p={λ∈C|f λ(z) )have an attractive periodic point of order p } and D p denote the connected component of D ^ p It is found that D ^ 1 consists of infinite components D 1,D 1 k,k=0,±1, ±2, ,and for any p≥2 and for each p th root η of unity there is a domain D p which is tangent to D 1 k at 1+e 2ηπi +2kπi Then it is proved that {f np λ(-e λ-1 ),n∈N} converges to one of the attractive periodic points z(λ) of order p,which is analytic in λ,It follows that D p is simply connected
出处
《北京理工大学学报》
EI
CAS
CSCD
1998年第1期1-4,共4页
Transactions of Beijing Institute of Technology
基金
国家自然科学基金
关键词
复动力系统
整函数
吸性周期点
complex dynamical system
entire functions
attractive periodic points