期刊文献+

基于连续状态小波阈值的各向异性扩散去噪方法 被引量:2

Denoising method of anisotropic diffusion based oncontinuous state wavelet threshold
下载PDF
导出
摘要 小波方法和偏微分方程方法是图像去噪中的主要方法。根据二者的去噪特点,提出了一种结合两种方法的混合去噪算法。对噪声图进行小波变换,得到高频子带和低频子带。通过对各高频子带进行归一化,获得一种连续状态量,为了保护边缘对这一连续状态量进行前向-后向扩散。由扩散后的新状态量得到由其决定的权系数,把权系数作用在小波系数上得到去噪后的各高频子带,通过与低频子带的重构得到去噪图像。数值试验结果表明:通过采用本方法对图像去噪,得到了较好的去噪效果,达到了既保护边缘又去除噪声的目的,能获得较高的信噪比。 Wavelet and partial differential equation (PDE) are the main methods in removing image noises. According to both characteristics of denoising, a mixed method of combining wavelet with PDE for image denoising is proposed. Each higher frequency subband is normalized to gain a quantity of continuous states. It is important to pr-otect edge that a continuous state quantity is de noised by means of forward and backward diffusion. We obtain theweight coefficient that is determined by new state quantity after diffusion. The new higher frequency subbands aregained when weight coefficient act on wavelet coefficient. We achieve the process of denoising through wavelet r-econstruction in the end. It is indicated from the experimental results that new method can receive better effect of image de noising and higher SNR than others methods, it attain the purpose of preserving edge and smoothing noi-se at the same time.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2009年第4期750-753,767,共5页 Systems Engineering and Electronics
关键词 小波变换 阈值 各向异性扩散 连续状态 归一化 wavelet transform threshold anisotropic diffusion continuous state normalization
  • 相关文献

参考文献10

  • 1Donoho D L, Johnstone I M. Ideal spatial adaption by wavelet shrinkage[J]. Biometr-ica, 1994, 81 (3) :425 - 455.
  • 2Donoho D L. Denoising by soft thresholding[J]. IEEE Trans on Information Theory, 1995, 41(3) : 613 - 627.
  • 3Zhang L, Bao P, Pan Q. Threshold analysisin wavelet-based denoising[J]. IEEE El-ectronics Letters, 2001, 37 ( 24 ):1485 - 1486.
  • 4Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion[J]. IEEE Trans. on Pattern Anal Machine Intell, 1990, 12(7):629-639.
  • 5Weickert J. Theoretical foundations of anisotropic diffusion in image processing[J]. Computing, 1996,11 : 221 - 236.
  • 6张宜,陈刚.基于偏微分方程的图像处理[M].北京:高等教育出版社,2004.
  • 7Gilboa G, Sochen N, Zeevi Y. Forward and backward diffusion processes for adaptive image enhancement and denosing [J]. IEEE. Trans. on Image Processing, 2002, 11(7) :689 -703.
  • 8肖亮,韦志辉,吴慧中,徐拥军.一种基于小波子带各向异性扩散方程的图像平滑方法[J].计算机工程与应用,2001,37(18):36-39. 被引量:2
  • 9吴亚东,孙世新.基于二维小波收缩与非线性扩散的混合图像去噪算法[J].电子学报,2006,34(1):163-166. 被引量:34
  • 10Jansen M, Malfait M, Buhheel A. Generali-zed cross validation for wavelet Thresh-olding[J]. Signal Processing, 1997,56 (1) 33 - 44.

二级参考文献13

  • 1Gan Xiaochao,计算机研究与发展,2001年,38卷,3期
  • 2Du Xiaoxiao,上海大学学报,2001年,35卷,2期
  • 3Liu Guizhong,小波分析及其应用,1992年
  • 4Donoho D L.Denoising by soft thresholding[J].IEEE Trans Information Theory,1995,41(3):613-627.
  • 5Rudin L,et al.Nonlinear total variation based noise removal algorithms[J].Phys D,1992,60(1-4):259-268.
  • 6Steidl G,Weickert J.Relations between soft wavelet shrinkage and total variation denoising[A].Proceedings of the 24th DAGM Symposium on Pattern Recognition[C].London:Springer Press,2002.198-205.
  • 7Mrazek P,et al.Correspondences between wavelet shrinkage and nonlinear diffusion[A].Scale Space Methods in Computer Vision[C].Berlin:Springer Press,2003.101-116.
  • 8Steidl G,et al.On the equivalence of soft wavelet shrinkage,total variation diffusion,total variation regularization,and SIDEs[J].SIAM Numerical Analysis,2004,42(2):686-713.
  • 9Rudin L,Osher S.Total variation based image restoration with free local constraints[A].Proceedings of the IEEE International Conference on Image Processing[C].Piscataway:IEEE Press,1994.31-35.
  • 10Perona P,Malik J.Scale space and edge detection using anisotropic diffusion[J].IEEE Trans Pattern Analysis and Machine Intelligence,1990,12(7):629-639.

共引文献39

同被引文献20

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部