期刊文献+

多路延迟结构的修正MUSIC算法频率估计 被引量:6

Frequency estimation of modified MUSIC algorithm based on multi-path delay structure
下载PDF
导出
摘要 提出将多路延迟数字测频结构与高分辨率谱估计的MUSIC算法相结合,有效地实现了信号频率估计。针对MUSIC算法在低信噪比条件下频率估计性能下降的缺点,研究的修正MUSIC算法通过对接收数据共轭重构,产生新的协方差矩阵,有助于改善特征值的分布,使其具有平均的意义,从而提高了信号频率估计的性能。实验结果证明,相对于常规MUSIC算法,该方法在相同的信噪比和快拍数条件下,具有更高的频率估计精度和稳健性,而且计算量也无明显增加。 A new frequency estimation method based on the digital frequency measurement structure of multi-path delay and high resolution spectrum evaluation MUSIC algorithm is proposed, which can estimate signal frequency effectively. But the frequency estimation performance in low SNR will decrease. This paper gives a modified MUSIC (MMUSIC) algorithm, which can get a new covariance matrix by reconstructing the received data and their conjugatings. This method can change the eigenvalue distributions of the covariance matrix and make it have averaged significance, thus it improves the performances of the signal frequency estimation. With the same SNR and snapshot number, the performances of the MMUSIC algorithm has better frequency estima- tion accuracy than the traditional MUSIC algorithm. Simulation results show that it has better feasibility and robustness, as well as the computational complexity will not increase obviously.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2009年第4期795-798,共4页 Systems Engineering and Electronics
基金 国家863高技术研究发展计划(2006AA701408)资助课题
关键词 修正MUSIC算法 频率估计 多路延迟 重构 协方差矩阵 modified MUSIC algorithm frequency estimation multi-path delay reconstruct covariance matrix
  • 相关文献

参考文献13

  • 1Zoltowski M D, Mathews C P. Real-time frequency and 2-D angle estimation with Sub-Nyquist Spatio-Temporal sampling[J]. IEEE Trans. on Signal Processing, 1994, 42 (10):2781 - 2794.
  • 2McCormick W S, Miller D F, Tsui J. Resolution of a 2π ambiguity problem in multiple frequency spectral estimation [J]. IEEE Trans. on Aerospace and Electronic System, 1995, 31 (1):2-8.
  • 3刘云,李志舜.基于修正MUSIC算法的宽带相干源波达方向估计[J].西北工业大学学报,2003,21(4):457-460. 被引量:10
  • 4高星辉,张承云,常鸿森.改进MUSIC算法对信号DOA的估计[J].系统仿真学报,2005,17(1):223-224. 被引量:12
  • 5唐斌,肖先赐.欠采样环境下信号多频率估计[J].电子科学学刊,1997,19(5):619-624. 被引量:17
  • 6Juha T K, Jyrki J. Sinusoidal frequency estimation by signal subspaee approximation[J]. IEEE Trans. on Signal Processing, 1992, 40(12):2961-2972.
  • 7唐斌,熊英,肖先赐.基于高阶统计的欠采样多信号频率估计[J].仪器仪表学报,1999,20(3):229-231. 被引量:3
  • 8Kundu D. Modified MUSIC algorithm for estimating DOA of signals[J]. Signal Processing, 1996, 48(1) : 85 - 90.
  • 9Kaveh M, Barabell A J. The statistical performance of the MUSIC and the minimum-norm algorithm in resolving plane waves in noise[J]. IEEE Trans. on ASSP, 1986, 34:331 - 341.
  • 10Haykin S. Advances in spectrum analysis and array processing, Volume Ⅱ. New Jerey: Prentice-Hall, 1991: 263 - 293.

二级参考文献19

  • 1路鸣,保铮.改善MUSIC空间谱估计分辨率的后处理算法[J].电子学报,1990,18(4):57-62. 被引量:6
  • 2唐斌.空间信号多维参数估计方法研究:博士学位论文[M].电子科技大学,1996..
  • 3Wang H, Kaveh M. Coherent Signal-Subspace Processing for the Detection and Estimation of Angles of Arrival of Multiple Wideband Sources. IEEE Trans on ASSP, 1985, 33(8): 823~831.
  • 4Doron M A, Weiss A J. On Focusing Matrices for Wideband Array Processing. IEEE Trans on Signal Processing, 1992,42(6): 1295~ 1302.
  • 5Hung H, Mao C. Robust Coherent Signal-Subspace Processing for Direction-of-Arrival Estimation of Wideband Sources. IEE Proc Radar Sonar & Navigation, 1994, 141(5): 256~262.
  • 6Claudio E D Di, Parisi R. WAVES: Weighted Average of Signal Subspaces for Robust Wideband Direction Finding.IEEE Trans Signal Processing, 2001, 49(10): 2179~2191.
  • 7Wax M, Shan T J, Kailath T. Spatio-Temporal Spectral Analysis by Eigenstructure Methods. IEEE Trans on ASSP,1984, 32(8): 817~827.
  • 8Unnikrishna S, Kwon B H. Forward/Backward Spatial Smoothing Techniques for Coherent Signal Identification. IEEE Trans on ASSP, 1989, 37(1): 8~15.
  • 9Kundu D. Modified MUSIC Algorithm for Estimating DOA of Signals. Signal Processing, 1996, 48(1): 85~90.
  • 10Haykin S, Reilly J P, Kezys V, Vetatschitsch E. Some Aspects of Array Signal Processing. IEE Proceedings-F, 1992,139(1): 1~26.

共引文献46

同被引文献53

  • 1李鹏 ,朱平云 ,陈望达 .欠采样信号多采样频率处理方法[J].海军航空工程学院学报,2004,19(1):165-167. 被引量:4
  • 2王洪洋,廖桂生,吴云韬.欠采样频率估计方法[J].电子学报,2004,32(12):1978-1981. 被引量:13
  • 3刘渝,Sora.,JJ.谐波数检测的最大特征值变化率准则[J].电子学报,1994,22(10):101-104. 被引量:2
  • 4赵春晖,李刚,李福昌.宽带测向研究现状及展望[J].哈尔滨工程大学学报,2006,27(2):290-295. 被引量:8
  • 5李淳,廖桂生,李艳斌.改进的相关干涉仪测向处理方法[J].西安电子科技大学学报,2006,33(3):400-403. 被引量:63
  • 6王永良,陈辉,彭应宇,万群.空间谱估计理论与算法[M].北京:清华大学出版社,2009.
  • 7王永良,陈辉,彭应宁等.空间谱估计理论与算法[M].北京:清华大学出版社,2005:18-52,466-493.
  • 8Atheley F. Asymptotically decoupled angle-frequency estimation with sensor arrays[C]. IEEE Signals, Systems, and Computer, Pacific Grove, CA, USA, 1999: 1098-1102.
  • 9Chen Y H and Chen C H. Direction-of-arrival and frequency estimations for narrowband sources using two single rotation invariance algorithms with the marked subspace[J], lEE Radar and Signal Processing, 1992, 139(4): 297-300.
  • 10Wang S, Caffery J, and Zhou X. Analysis of a joint space-time DOA/FOA estimator using MUSIC[C]. IEEE International Symposium on PIMRC, San Diego, 2001: 138-142.

引证文献6

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部