期刊文献+

一种基于标记阈值的分水岭分割新算法 被引量:17

New watershed segmentation algorithm via marker threshold
下载PDF
导出
摘要 为了克服分水岭算法的过分割问题,提出了一种新的带标记(marker)的分水岭分割算法。该方法首先根据邻接像素的连通性提取原始图像梯度的局部极小值点,然后采用最大熵阈值法去除由噪声及图像细节纹理所产生的伪极小值点,将修改后得到的极小值点强制作为标记,并在原始梯度图像上应用带标记的分水岭算法。该方法的优点是可以自适应地提取标记而不需要先验知识,克服了标记提取的困难。实验结果表明,该算法能有效地减少分水岭的过分割现象。 An improved marker-controlled watershed segmentation method is proposed to reduce the oversegmentation of watershed algorithm. Firstly, regional minimas in the gradient image are extracted according to the connectivity of adjacent pixels. Then, a maximum entropy threshold method is used to exclude the local minimas generated by the noise and texture. Finally, regarding the modified minimum points as markers, the watershed algorithm is applied to the modified gradients by the markers. The advantages of this method is that makers are extracted adaptively without the need for prior knowledges, which overcomes marker extraction dif- ficulties. Experimental results show that the proposed algorithm can be effective overcomes the over-segmentation problem of watershed.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2009年第4期972-975,共4页 Systems Engineering and Electronics
基金 国家杰出基金(60525303) 燕山大学博士基金(B243)资助课题
关键词 图像分割 分水岭 多尺度梯度 标记 最大熵阈值 image segmentation watershed morphological gradient marker extraction maximum entropy threshold
  • 相关文献

参考文献17

  • 1Pal N R, Pal S K. A review on image segmentation techniques [J]. Pattern Recognition, 1993, 26(9): 1277 - 1291.
  • 2Pun T. A new method for grey-level picture thresholding using the entropy of the histogram [J]. Signal Processing, 1980,2 (3):223 -237.
  • 3KapurJ N, ShahooPK, WongAKC. Anewmethod for gaylevel picture thresholding using the entropy of the histogram [J]. Computer Vision, Graphics and Image Processing, 1985, 29(3):273 - 285.
  • 4Abutaleb A S. Automatic thresholding of gray-level pictures using two-dimensional entropy [J]. Computer Vision, Graphics, and Image Processing, 1989, 47(1) :22 - 23.
  • 5马艳,张治辉.几种边缘检测算子的比较[J].工矿自动化,2004,30(1):54-56. 被引量:109
  • 6崔天横,高晶敏,刘振慧.经典边缘检测的快速算法[J].微计算机应用,2007,28(6):575-579. 被引量:6
  • 7朱炜,徐玉如,万磊,吕春旺.基于二维直方图和粒子群优化的边缘检测[J].系统工程与电子技术,2007,29(7):1192-1196. 被引量:7
  • 8陈忠,赵忠明.基于区域生长的多尺度遥感图像分割算法[J].计算机工程与应用,2005,41(35):7-9. 被引量:26
  • 9Vincent L, Soille P. Watershed in digital spaces: An efficient algorithm based on immersion simulations [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1991, 13 (6) : 583 -589.
  • 10Haris K, Efstratiadis S N, Maglaveras N, et al. Hybrid image segmentation using watersheds and fast region merging [J]. IEEE Trans. on Image Processing, 1998, 7(12) :1684 -1699.

二级参考文献28

  • 1吴小培,汪炳权,黄立霞,罗斌.模板匹配的快速算法[J].信号处理,1993,9(4):221-225. 被引量:8
  • 2郑翔,黄艺云.经典边缘检测模板的快速算法[J].信号处理,1995,11(4):317-320. 被引量:9
  • 3竺子民.光电图象处理[M].武汉:华中理工大学出版社,2001.91-93.
  • 4章毓晋.图像分割[M].北京:科学出版社,2001.34.
  • 5Moghaddamzadeh A,Bourbakis N.A fuzzy region growing approach for segmentation of color images[J].Pattern Recognition,1997; 30 (6):867-881.
  • 6Zhu S C,Yuille A.Region competition:unifying snakes,region growing,and Bayes/MDL for multiband image segmentation[J].IEEE Trans Pattern Analysis Mach Intell,1996;18(9):884-900.
  • 7骆继成 郭华东 史文中.遥感数据的不确定性问题[M].科学出版社,2004..
  • 8MilanSnka VaclavHIavacRogerBoyle著 艾海舟 武勃译.图像处理、分析与机器视觉[M].北京:人民邮电出版社,2003..
  • 9Blaschke T,Hay G.Object-oriented image analysis and scale-space:Theory and methods for modeling and evaluating multi-scale landscape structure[J].International Archives of Photogrammetry and Remote Sensing,2001; (34):22-29.
  • 10Ursula C Benz,Peter Hofman,Gregor Willhauck et al.Multi-resolution,Object-oriented fuzzy analysis of remote sensing data for GISready information[J].ISPRS Journal of Photogrammetry & Remote Sensing,2004; (58):239-258.

共引文献143

同被引文献146

引证文献17

二级引证文献96

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部