期刊文献+

TiAl基合金弯曲疲劳的断裂机制 被引量:1

Fracture Mechanism of Bending Fatigue for TiAl-Based Alloys
下载PDF
导出
摘要 通过对弯曲疲劳断裂宏观试验结果以及相应的卸载表面观察和断口观察分析研究,发现在疲劳加载的过程中,首先在缺口根部产生裂纹,裂纹在应力循环的作用下不断扩展,直至疲劳裂纹的长度达到与疲劳外加力所匹配的临界裂纹长度时,突然发生整体解理断裂。在一定应力下的疲劳弯曲加载试验中,随着循环次数的增加,产生的裂纹变长,即产生的损伤严重,疲劳区域变宽,其断裂机制是疲劳区各裂纹单向扩展,解理区起裂源分散扩展直至断裂。对于循环次数较小的材料,其断裂机制是具有发散扩展路径的起裂源直接产生于缺口根部,然后分散扩展直至断裂,在其扩展的路径上并不因疲劳区与解理区而有任何的不同。 Based on the results of notch 3PB fatigue tests and the observation of metallographic surfaces and fracture surfaces, it is found that for fatigue bending tests, the fatigue crack initiated and extended directly from the notch root, then extended step by step by the fatigue bending loads. When a crack extended to the length, which acts as a Griffiths crack and matches the loading stress, the crack propagated catastrophically through entire specimen. In the fatigue bending tests at the certain stress amplitude values, the crack length increased with increasing of fatigue unloading cycles, and the damage produced by fatigue process increased, the fatigue regions became wider, the fracture mechanism is that the fatigue regions propagate along a single orientation, the cleavage regions propagate dispersedly to different orientations. However, for shorter fatigue cycles the fracture mechanism is that initiation origins are produced at the notch root, then propagate dispersedly to final fracture. No any differences appear between the fatigue and the cleavage regions on the propagation path.
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2009年第4期637-641,共5页 Rare Metal Materials and Engineering
基金 国家自然科学基金(50471109) 甘肃省自然科学基金(3ZS061-A25-037)
关键词 TIAL合金 弯曲疲劳 断裂机制 TiAl-based alloys fatigue bending fracture mechanism
  • 相关文献

参考文献8

  • 1Millett J C F, Bourne N K, Gray G T et al.Acta Mater[J], 2002, 50(19): 4801.
  • 2Mckenna V T, Rubal M P, Steif P Set al. Metall Mater Trans A[J], 2002, 33A: 581.
  • 3Halford T P, Bowen P. J Mater Process Tech[J], 2004, 153-154: 615.
  • 4Gilbert Henaff, Anne-Lise Gloanec. lntermetallics[J], 2005, 13: 543.
  • 5Trail S J, Bowen P. Materials Science and Engineering[J], 1995, A192/193:427.
  • 6Francesco Marino, Rebuffo A, Sorrentino F. International Journal of Fatigue[J], 2005, 27:143.
  • 7曹睿,陈剑虹,朱浩,张继,王国珍.γ-TiAl基合金的韧化机理及途径[J].材料科学与工程学报,2004,22(5):674-679. 被引量:5
  • 8Cao R, Chcn J H, Zhang Jet al. Engineering Fracture Mechanics[J], 2008, 75:4019.

二级参考文献18

  • 1贺连龙,叶恒强,徐仁根,杨德庄.TiAl-V-Si合金中Ti_(5)Si_3析出相与基体相的取向关系[J].金属学报,1994,30(4). 被引量:8
  • 2张继,张志宏,邹敦叙,仲增墉.TiAl合金细小全层片组织断裂机理[J].金属学报,1996,32(10):1044-1048. 被引量:8
  • 3Zhang Y G, Chen G L, Guo J T, Wan X J, Fend D. Structural Intermetallics[ M]. Beijing: National Defense Industry Press, 2001.
  • 4M. Yamaguchi, et al. High-Temperature Ordered Intermetallic Alloys Ⅵ, Partl~ 2[J]. MRS, 1995,364(3).
  • 5Y.W. Kim. Intermetallic alloys based on gamma titanium aluminide [ J ]. JOM, 1989,41 (7): 24-30.
  • 6Y.W. Kim. Ordered intermetallic alloys, part3: gamma titanium aluminides[ J ]. JOM, 1994,49 ( 7 ): 39-39.
  • 7Y.W. Kim. Effects of microstructure on the deformation and fracture of γ-TiA1 alloys [ J ]. Material Soic Eng, 1995. A192/A193 ( 3 ): 519-533.
  • 8H.E. Deve, A.G. Evans[J]. Acta Metall,1992,40:1259-65.
  • 9K.S. Chan[J]. Metall. Trans. A.1993,24(3):569-583.
  • 10K.S.Chan, Y-W.Kim[J]. Acta Metall Mater, 1995,43(2):439-451.

共引文献4

同被引文献13

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部