期刊文献+

部分相干电磁光束在线性增益(损耗)介质中的传输特性 被引量:1

The Properties of Partially Coherent Electromagnetic Beams Propagating in Linear Gain or Loss Media
下载PDF
导出
摘要 根据Wolf提出的电磁光束模型和部分相干光理论,以电磁高斯-谢尔模型光束为例,推导出光束在线性增益(损耗)介质中传输的交叉谱密度矩阵,研究介质传输场中强度和偏振度的变化特点.研究结果表明,任意电磁光束在线性增益(损耗)介质中传输时,当其为增益(损耗)介质时,会增强(衰减)光束的强度;但对偏振度却没有太大的影响.波数实部Kr越小,轴上偏振度越大;相干长度δyy越小,轴上偏振度越大.当光源处的相干长度xδx与δyy取值相同时,尽管传输距离不断增大,光束在传输过程中的偏振度不发生变化.光源处的偏振度P(0)越大,轴上偏振度也越大. Based on the electromagnetic beams model proposed by Wolf and the propagation theory of partially coherent light, by taking electromagnetic Gaussian Schell-model (EGSM) beams as an example, the expression for the cross-intensity matrix of the beam propagating in linear gain or loss media was derived. The variation characteristics of spectral density and degree of polarization in linear gain or loss media have been studied. It can be shown that, the stochastic electromagnetic beams propagating in linear gain or loss media, when the media property is gain (loss), it will heighten (lower) the spectral density; but it has iittle of no effect on the degree of polarization. The effects of the wave number K, or the source coherence length is smaller, the axis degree of polarization is greater. When the values of the coherence length δxx and δxr are the same, even though the transmission distance increasing, the degree of polarization does not change. The greater the source degree of polarization p^(0) , the axis degree of nolarization is greator
出处 《华侨大学学报(自然科学版)》 CAS 北大核心 2009年第3期261-266,共6页 Journal of Huaqiao University(Natural Science)
基金 国家自然科学基金资助项目(60477041) 福建省科技计划重点项目(2007H0027)
关键词 部分相干光 电磁光束 线性增益介质 线性损耗介质 谱密度 偏振度 partially coherent beams electromagnetic beams linear gain media linear loss media spectral density degree of polarization
  • 相关文献

参考文献22

  • 1WOLF E. Unified theory of coherence and polarization of random electromagnetic beams[J]. Phys Lett (A), 2003, 312:263-267
  • 2WOLF E. Correlation-induced changes in the degree of polarization, the degree of coherence, and the speetrum of random electromagnetic beams on propagation[J]. Opt Lett,2003, 28:1078-1180.
  • 3KOROTKOVA O, SALEM M, WOLF E. Beam conditions for radiation generated by an electromagnetic Gaussian schell-model source[J]. Opt Lett, 2004,29 : 1173-1175.
  • 4ROYCHOWDHURY H, KOROTKOVA O. Realizability conditions for electromagnetic Gaussian Schell-model sources[J]. Opt Commun, 2005(249) :379-385.
  • 5ROYCHOWDHURY H, WOLF E. Determination of the electric cross-intensity matrix of a random electromagnetic beam[J]. Opt Commun, 2003(226) :57-60.
  • 6LI Y. LEE H, WOLF E. Spectra, coherence and polarization in Young's interference pattern formed by stochastic electromagnetic heams[J]. Opt Cornmun,2006(265): 63-72.
  • 7PU Ji-xiong, KOROTKOVA O, WOLF E. Invariance and non-invariance of the spectrum and of the degree of polarization of stochastic electromagnetic beams on propagation[J]. Opt Lett, 2006,31:2097-2099.
  • 8SCHOUTEN H F, VISSER T D, WOLF E. New effect in Young's interference experiment with partially coherent light[J]. Opt Lett, 2003,28:1182-1184.
  • 9SAI.EM M, KPRPTLPVA O, DOGARIU A, et al. Polarization changes in partially coherent electromagnetic beams propagating though turbulent atmosphere[J]. Waves in Random Media, 2004,14:513-523.
  • 10KPRPTLPVA O, SALEM M, WOLF E. The far-zone behavior of the degree of polarization of electromagnetic beams propagating through atmospheric turbulencc[J]. Opt Commun,2004(233) :225-230.

二级参考文献15

  • 1季小玲,肖希,吕百达.大气湍流对多色部分空间相干光传输特性的影响[J].物理学报,2004,53(11):3996-4001. 被引量:19
  • 2C. Palma, P. de Santis, G. Cincotti et al.. Propagation of partially coherent beams in absorbing media[J]. J. Mod. Opt,1995, 42(5): 1123-1135.
  • 3C. Palma, P. de Santis, G. Cineotti et al.. Propagation and coherence evolution of optical beams in gain media[J]. J. Mod.Opt, 1995, 43(1): 139-153.
  • 4F. Gori. Flattened Gaussian beams[J]. Opt. Commun, 1994,107:335-341.
  • 5V. Bagini, R. Borghi, F. Gori et al.. Propagation of axially symmetric flattened Gaussian beams[J]. J. Opt. Soc. Am.(A), 1996, 13(7): 1385-1394.
  • 6Baida Lii, Shirong Luo. General propagation equation of flattened Gaussian beams[J]. J. Opt. Soc. Am. (A), 2000, 17(11):2001 - 2004.
  • 7A. E. Siegman. New developments in laser resonators[C]. Proc.SPIE, 1990, 1224:2-14.
  • 8R. Martinez Herrero, P. M. Mejias. Second-order spatial characterization of hard-edge diffracted beams[J]. Opt. Lett,1993, 18(19): 1669-1671.
  • 9R. Martinez-Herrero, P. M. Mejias, M. Arias. Parametric characterization of coherent, lowest-order Gaussian beams propagation through hard-edged apertures [J]. Opt. Lett,1995, 20(2): 124-126.
  • 10Stuart A. Collins. Lens-system diffraction integral written terms of matrix optics[J]. J. Opt. Soc. Am. (A), 1970, 60(9):1168-1177.

共引文献15

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部