期刊文献+

几何缺陷对拱结构动力稳定性的影响 被引量:1

The effects of geometrical imperfections on dynamic stability of arch structures
下载PDF
导出
摘要 分析了外激励下几何缺陷对拱结构动力稳定性的影响。推导了拱结构边界确定而结构本身节点坐标偏差随机且指数相关时的条件相关矩阵,分解得到几何缺陷的分布方式和大小。从非线性运动方程出发,分别得出了周期荷载作用下非线性刚度矩阵可线性化,非周期荷载作用下同时考虑几何、材料非线性的Lyapunov指数计算方法。最后以一圆弧拱为例分别对周期荷载、阶跃荷载、脉冲荷载及地震荷载作用下几何缺陷的影响进行了数值分析。结果表明周期激励作用下拱结构存在动力失稳频域;在不同分布方式几何缺陷中动力稳定性对与屈曲模态相似的缺陷最为敏感。 This paper is concerned with the effects of geometrical imperfections on the dynamic stability of arch structure under external load. The conditional covariance matrix of stochastic arch structure, whose node coordinate deviations are exponentially correlative, is determined by deterministic boundary conditions, and through the decomposition of the matrix the distribution shapes and amplitude of geometrical imperfections are obtained. From the nonlinear motion equation, the top Lyapunov exponents for periodic load, in which the nonlinear stiffness matrix can be linearized, and for non-periodic load, where both geometrical and material nonlinearities are taken into account, are determined respectively. And a circular arch is taken as an example to investigate the effects of geometrical imperfections under periodic load, step load, impulsive load and earthquake load. The results show that the buckling frequency regions exist under periodic excitation and the dynamic stability is most sensitive to the geometrical imperfection that is similar to the static buckling mode.
出处 《地震工程与工程振动》 CSCD 北大核心 2009年第2期29-34,共6页 Earthquake Engineering and Engineering Dynamics
基金 国家自然科学基金项目(10502020)
关键词 几何缺陷 LYAPUNOV指数 拱结构 动力稳定性能 geometrical imperfection Lyapunov exponent arch structure dynamic stability
  • 相关文献

参考文献14

  • 1陈昕,沈世钊.单层穹顶网壳的荷载—位移全过程及缺陷分析[J].哈尔滨建筑工程学院学报,1990,23(4):38-45. 被引量:11
  • 2李忠学.初始几何缺陷对网壳结构静、动力稳定性承载力的影响[J].土木工程学报,2002,35(1):11-14. 被引量:36
  • 3叶继红,沈祖炎.初始缺陷对网壳结构动力稳定性能的影响[J].土木工程学报,1997,30(1):37-43. 被引量:17
  • 4郭海山,钱宏亮,沈世钊.地震作用下单层球面网壳结构的动力稳定性[J].地震工程与工程振动,2003,23(1):31-37. 被引量:35
  • 5Most T, Bucher C, Schorling Y. Dynamic stability analysis of non -linear structures with geometrical imperfections under random loading [J]. Journal of Sound and Vibration, 2004, 276 (1/2) : 381 -400.
  • 6Schorling Y, Bucher C. Dynamic stability analysis for structures with geometrical imperfections [ M ]// Structural Safety and Reliability, Balkema, Rotterdam: Naruhito Shiraishi, Masanobu Shinozuka, Y K Wen (Eds.), 1998:771 -777.
  • 7Schorling Y, Bucher C. Stochastic stability of structures with random imperfections[ M ]//Stochastic Structural Dynamics, Balkema, Rotterdam: B F Spencer Jr. , E A Johnson (Eds.), 1999:343 -348.
  • 8Bielewicz E, Gorski J. Shells with random geometric imperfections simulation - based approach [ J ]. International Journal of Non - Linear Mechanics, 2002(37) : 777 -784.
  • 9Yeo M H, Lee W K. Evidences of global bifurcations of an imperfect circular plate [J]. Journal of Sound and Vibration, 2006, 293 ( 1 - 2 ) : 138 - 155.
  • 10Elishako I, Zingales M. Contrasting probabilistic and anti - optimization approaches in an applied mechanics problem [ J ]. International Journal of Solids and Structures, 2003, 40(16) :4281 -4297.

二级参考文献14

  • 1郭小农,陈扬骥.短程线型单层球面网壳抗震分析[J].空间结构,1999,5(2):3-9. 被引量:8
  • 2叶继红,博士学位论文,1995年
  • 3陈昕,哈尔滨建筑工程学院学报,1990年,23卷,4期
  • 4Gioncu V. Buckling of reticulated shells: state-of-the-art.International Journal of Space Structures, 1995,10(1):1~46
  • 5Hatzis D. The Influence of Imperfections on the Behavior of Shallow Single- Layer Lattice Domes. [Ph. D. Thesis].University of Cambridge. 1987
  • 6Morris N F. Effect of imperfections on lattice shells. Journal of Structural Engineering, 1991, 117 (6): 1796-1814
  • 7Balut N, Porumb D, Gioncu V. Some aspects concerning the behavior and analysis of single - layer latticed roof structures.Stability of Metal Structures. Int. Coll. Paris, Prelim. Raport:1983. 133-140
  • 8Oran C. Tangent stiffness in plane frames. Journal of the Structural Division, ASCE, 1973, 99 (6): 973-985
  • 9Oran C. Tangent stiffness in space frames. Journal of the Structural Division, ASCE, 1973, 99 (6): 987-1001
  • 10Yeong-Bin Yang, Ming-Shan Shieh. Solution method for nonlinear problems with multiple critical points. AIAA Journal, 1990, 28 (12): 2110-2116

共引文献86

同被引文献11

  • 1陶龙光,侯公羽.超前锚杆预支护模拟试验[J].煤炭科学技术,1995,23(5):14-17. 被引量:3
  • 2陶龙光,侯公羽.超前锚杆预支护机理的模拟试验与成拱力学模型研究[J].中国矿业大学学报,1995,24(3):35-42. 被引量:12
  • 3徐芝伦.弹性力学[M].北京:高等教育出版社,1990..
  • 4余静 刘之洋 张玉奎 等.超前围壁锚杆结构与作用机理.煤炭学报,1986,11(2):64-69.
  • 5姜春旭,刘之详.超前围壁锚杆支护结构的模拟试验研究∥岩土力学进展.北京:中国展望出版社,1990:164.
  • 6Zhang J, Ellingwood B. Orthogonal series expansions of random fields in reliability analysis. J Eng Mech, 1994,120 (12) :2660.
  • 7Pi Y L, Trahair N S. Non-linear buckling and postbuckling of elastic arches. Eng Struct, 1998, 20 (7) : 571.
  • 8Pi Y L, Bradford M A, Uy B. In-plane stability of arches, lnt J Solids Struct, 2002, 39 ( 1 ) : 105.
  • 9Ovesy H R, Fazilati J. Stability analysis of composite laminated plate and cylindrical shell structures using semi-analytical finite strip method. Compos Struct, 2009, 89:467.
  • 10Leca E, New B. Settlements induced by tunneling in soft ground. Tunnelling Underground Space Technol,2007, 22:119.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部