期刊文献+

基于微细菌群体趋药性的函数优化算法 被引量:4

Function Optimization Method Based on Micro-Bacterial Colony Chemotaxis Algorithm
下载PDF
导出
摘要 在细菌群体趋药性(bacterial colony chemotaxis,BCC)优化算法的基础上,借鉴微遗传算法的思想,提出了一种新的优化算法——微细菌群体趋药性(micro bacterial colo-ny chemotaxis,M-BCC)算法。M-BCC算法利用两个菌群(寻优菌群和库存菌群)来寻优,寻优菌群使用BCC算法来寻找最优解,库存菌群保证了寻优菌群的多样性。对Ras-trigin函数和Schaffer's f6函数优化仿真,结果表明,微细菌群体趋药性算法的成功率分别达到了95%和52%,与遗传算法和BCC算法相比,优化效果较好。 This paper proposes a new optimized algorithm that is the Micro-BCC algorithm based on the Bacterial Colony Chemotaxis optimized algorithm. M-BCC algorithm makes use of two bacterial colonies (optimizing bacterial colony and storage bacterial colony) to find the optimum. Optimizing bacterial colony is to find the optimum by BCC algorithm and storage bacterial colony is to ensure the variety of optimizing bacterial colony. The simulation of Rastrigin function and Schaffer's f6 function optimization using M-BCC algorithm shows success rate of M-BCC can achieve 95% and 52% separately, and the algorithm is a good optimization algorithm comparing with genetic algorithm and BCC algorithm.
作者 吕慧显
出处 《青岛大学学报(工程技术版)》 CAS 2009年第1期19-24,共6页 Journal of Qingdao University(Engineering & Technology Edition)
基金 青岛大学青年科研基金项目(2007005)
关键词 函数优化 群体智能 细菌群体趋药性 微菌群 function optimization collective intelligence bacterial colony chemotaxis small bacterial colony
  • 相关文献

参考文献4

  • 1李威武,王慧,邹志君,钱积新.基于细菌群体趋药性的函数优化方法[J].电路与系统学报,2005,10(1):58-63. 被引量:92
  • 2Müller S D,Marchetto J,Airaghi S,et al.Optimization Based on Bacterial Chemotaxis[J].IEEE Transaction of Evolutionary Computation,2002,6(1):16-29.
  • 3Roland Thar,Michael Kühl.Complex Pattern Formation of Marine Gradient Bacteria Explained by a Simple Computer Model[J].FEMS Microbiology Letters,2005,246(1):75-79.
  • 4Laiq Khan,Lo K L.Hybrid Micro-GA Based FLCs for TCSC and UPFC in a Multi-Machine Environment[J].Electric Power Systems Research,2006,76(9-10):832-843.

二级参考文献9

  • 1Holland J H. Adaptation in Nature and Artificial Systems [M]. MIT Press, 1992.
  • 2Dorigo Marco, Maniezzo Vittorio, Colorni Alberto. Ant System: Optimization by a Colony of Cooperating Agents [J]. IEEE Transaction on SMC, Part B, 1996, 26(1): 29-41.
  • 3Muller S D, J Airaghi Marchetto S, Koumoutsakos P. Optimization Based on Bacterial Chemotaxis [J]. IEEE Transaction of Evolutionary Computation, 2002, 6(1): 16-29.
  • 4Bremermann H J. Chemotaxis and Optimization [J]. J Franklin Inst , 1974, 297: 397-404.
  • 5Passino K M. Biomimicry of bacterial foraging for distributed optimization and control [J]. IEEE Control System Magazine, 2002-06. 52-67.
  • 6Reynolds C W. Flocks, herd, schools: a distributed behavioral mode [A]. Proceeding of SIGGRAPH'87, Computer Graphics [C]. Anaheim, California. 1987, 21(4): 25-34.
  • 7Kennedy J, et al. Particle Swarm optimization [A]. Proc. IEEE Int. Conf. on Neural Networks [C]. Perth, WA, Australia, 1995. 1942-1948.
  • 8Clerc M, Kennedy J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space [J]. IEEE Trans. Evolutionary Computation, 2002, 6(1): 58-73.
  • 9Eberhart R C, Shi Y. Comparing inertia weights and constriction factors in particle swarm optimization [A]. Proc. 2000 Congress on Evolutionary Computation [C]. Piscataway, NJ: IEEE Service Center, 2000. 84-88.

共引文献91

同被引文献15

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部