期刊文献+

关于悬链线的一点注记(英文) 被引量:1

A Note on Catenary
下载PDF
导出
摘要 悬链线是微积分、微分方程、微分几何、变分计算及数值分析中的一个重要课题。本文通过一些诸如方轮自行车、旋转的最小面积等有趣的例子,计算悬链线和相应半圆下面的面积,证明悬链线到处都有,但并不是无处不在。 Catenary is an important topic in calculus, differential equations, differential geometry, variational calculus, and even in numerical analysis. A great deal of work has been reported regarding the catenary. In this note, in addition to some interesting examples of the catenary in geometry such as the square wheels bicycle, minimal surface of revolution, by calculating the areas below the catenary and half - circle, we show, even in geometry, the catenary is not everywhere.
出处 《扬州职业大学学报》 2009年第1期1-5,共5页 Journal of Yangzhou Polytechnic College
关键词 悬链线 微分几何 最小面积 教学注记 Catenary differential geometry minimizing surface teaching notes
  • 相关文献

参考文献4

  • 1L HALL,S WAGON.Roads and wheels[].Mathematics Magazine.1992
  • 2S NEDEV.The catenary— An ancient problem on the computer screen[].European J Physics.2000
  • 3HX YU,R LIEW.Considering catenary action in designing end -restrained steel beams in fire[].Advances in Struc- tural Engineering.2005
  • 4Thorpe J A.Elementary Topics in Differential Geometry[]..1979

同被引文献2

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部