期刊文献+

基于联赛评价和知识提取的交互式遗传算法 被引量:1

Interactive genetic algorithms with tournament evaluation and evolutionary knowledge extraction
原文传递
导出
摘要 交互式遗传算法基于用户评价获得进化个体适应值,是解决性能指标难以(无法)显式描述的复杂优化问题的有效方法.为有效解决交互式遗传算法的用户疲劳问题,提高算法的整体性能,提出了一种基于有向图提取进化知识的高性能交互式遗传算法.首先,基于进化种群构造联赛评价对,并确定进化个体的占优关系;然后,建立有向图,利用有向图节点的出度和入度计算进化个体适应值,并确定优势个体和建筑块;最后,基于建筑块生成新个体,参与种群后续进化.在服装进化设计系统中的应用结果表明,本文算法可有效减轻用户疲劳,提高算法的搜索能力. Interactive genetic algorithms, whose individual's fitness is assigned by a user, are effective methods to solve a complicated optimization problem with its indices being hard or even impossible to be explicitly described. In order to alleviate user fatigue and improve the algorithm' s performance, we presented an emeient interactive genetic algorithm with extracting evolution- ary knowledge based on a directed graph. First, some pairs of tournament evaluated evolutionary individuals were constructed according to the evolutionary population, and the dominance relations of these individuals were obtained. Then a directed graph was built, an individual' s fitness was calculated by using the in-degree and out-degree of its corresponding vertex of the directed graph, and some superior individuals as well as building blocks were obtained. Finally, some new individuals were generated based on these building blocks and involved in the subsequent evolutions. The proposed algorithm was applied in a fashion evolu- tionary design system and the results showed the algorithm' s advantage in alleviating user fatigue and improving search performance.
出处 《山东大学学报(工学版)》 CAS 北大核心 2009年第2期1-7,共7页 Journal of Shandong University(Engineering Science)
基金 国家自然科学基金资助项目(60775044) 教育部新世纪优秀人才支持计划项目(NCET-07-0802)
关键词 优化 遗传算法 交互 有向图 建筑块 optimization genetic algorithms interaction directed graph building block
  • 相关文献

参考文献12

二级参考文献34

  • 1周勇,巩敦卫,郝国生,郭一楠,孙晓燕.交互式遗传算法基于NN的个体适应度分阶段估计[J].控制与决策,2005,20(2):234-236. 被引量:22
  • 2郝国生,巩敦卫,史有群,孙晓燕.交互式遗传算法的机器代替用户方法[J].模式识别与人工智能,2006,19(1):111-115. 被引量:8
  • 3Takagi H. Interactive evolutionary computation:Fusion of the capabilities of EC optimization and human evaluation[J]. Proc of the IEEE, 2001,89 (9) : 1275-1296.
  • 4Biles J A, Anderson P G, Loggi L W. Neural network fitness functions for a musical IGA[A]. Proc of the Int ICSC Symposium on Intelligent Industrial Automation and Soft Computing[C]. UK, 1996;B39-44.
  • 5Lee Joo-young, Cho Sung-bae. Sparse fitness evaluation for reducing user burden in interactive genetic algorithm [A]. 1999 IEEE Internatil Fuzzy Systems Conference Proceedings [C]. Seoul, 1999, 2:998-1003.
  • 6Sugimoto F, Yoneyama M. An evaluation of hybrid fitness assignment strategy in interactive genetic algorithm[A]. Proc of the 5th Australasia-Japan Joint Workshop on Intelligent and Evolutionary Systems[C].Dunedin, 2001 :62-69.
  • 7Takagi H. Interactive Evolutionary Computation: Fusion of the Capabilities of EC Optimization and Human Evaluation. Proc of the IEEE, 2001, 89(9): 1275- 1296.
  • 8Takagi H, Ohya K, Ohsaki M. Improvement of Input Interface for Interactive Genetic Algorithms and Its Evaluation. In: Proc of the 12th Symposium on Fuzzy System.. Tokyo, Japan, 1996, 513 -516.
  • 9Venturini G, Slimane M, Morin F. On Using Interactive Genetic Algorithms for Knowledge Discovery in Databases. In: Pmc of the 7th International Conference on Genetic Algorithms. London, UK,1997, 696 - 703.
  • 10Fang C, Chen J. A Study on Multi Criteria Decision Marking Mode: Interactive Genetic Algorithms Approach. In: Proc of the IEEE Conference on Systems, Man, and Cybernetics. Tokyo,Japan, 1999, 356- 362.

共引文献45

同被引文献8

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部