期刊文献+

三对角逆M-矩阵的Hadamard积 被引量:1

On Hadamard Product of Tridingonal Inverse M-Matrices
下载PDF
导出
摘要 证明如果A,B∈M-1分别是上、下Hessenberg矩阵,则对任意的H1,H2∈S2,A°B与(A°H1)°(B°H2)都是三对角逆M-矩阵。 If A, B ∈ M^-1 are lower and upper Hessenberg matrices respec-tively, then A ° B and (A ° B l ) ° ( B °H2 ) are tridingonal inverse M-matrices which are totally nonnegative, for any H°, H2 ∈S2.
作者 高振兴
出处 《沈阳师范大学学报(自然科学版)》 CAS 2009年第2期158-160,共3页 Journal of Shenyang Normal University:Natural Science Edition
关键词 HADAMARD积 逆M-矩阵 三对角矩阵 HESSENBERG矩阵 Hadamard product inverse M-matrix tridiagonal matrix Hessenberg matrix
  • 相关文献

参考文献8

  • 1HORN R A, JOHNSON C R. Topics in Matrix Analysis[M]. New York: Cambridge University Press, 1991.
  • 2JOHNSON C R. Inverse M-Matrices[J]. Linear Algebra Appl, 1982,47(2):195-216.
  • 3MCDONALD J J, NEUMANN M, JNEIDER H, et al. Inverses of unnipatic M-Matrices[J]. SIAM J Matrix Anal Appl, 1996,17(1-3) : 1025-1036.
  • 4NEUMANN M. A conjecture concerning the Hadamard Product of inverse of M-Matrices[J ]. Linear Algabra Appl, 1998,285 (1-3) : 277-290.
  • 5WANG Boying, ZHANG Xiuping, HANG Fuzhen. On the Hadarnard Product of inverse of M-Matrices[J]. Linear Algabra Appl, 2000,305(1-3) :23-31.
  • 6刘玉,曹重光.半正定矩阵Hadamard积的不等式[J].数学的实践与认识,2006,36(4):271-273. 被引量:1
  • 7燕列雅,于育民.实矩阵的Hadamard积的一些性质[J].大学数学,2005,21(4):100-102. 被引量:2
  • 8朱砾.几类对角占优矩阵的Hadamard积的性质[J].湘潭大学自然科学学报,2006,28(2):5-7. 被引量:4

二级参考文献8

  • 1逄明贤.矩阵对角占优性的推广及应用[J].应用数学学报,1989,12(1):35-43. 被引量:49
  • 2曹重光.四元数自共轭矩阵的几个定理[J].数学研究与评论,1988,(3):346-348.
  • 3Horn R, Johnson C. Topics in Matrix Analysis[M]. Cambridge University Press, New York, 1991.
  • 4Johnson C R. Partitioned and Hadamard product matrix inequalities[J]. J Res, Nat Bur Standars, 1978, 83: 585-591.
  • 5Zhang F. Notes on Hadamard products of matriced[J]. Linear Multilinear Algebra, 1989, 25: 237-242.
  • 6Zhang Fuzhen, Tang Shouxian, Block matrix techniques and matrix inequalities[J]. Numerical Mathematics J of Chinese Univ, 2003, 12: 15-20.
  • 7Robert Reams.Hadamard inverses,square roots and products of almost semidefinite matrices[J].Lin Alg Appl,1999,288:35-43.
  • 8王章雄.关于一类矩阵的一个不变量[J].数学的实践与认识,1999,29(3):29-32. 被引量:3

共引文献4

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部