期刊文献+

非对称Ⅰ型动态裂纹尖端后部区受均布载荷作用

Rear sections of asymmetrical modeⅠdynamic crack tips subjected to homogeneous loads
下载PDF
导出
摘要 通过复变函数论的方法,对非对称Ⅰ型裂纹尖端后部区受均布载荷作用下的动态扩展问题进行了研究。根据正交异性体弹性动力学平面问题运动方程的相应关系,采用自相似函数的方法可以获得解析解的一般表达式。应用该法可以很容易地将所讨论的问题转化为Riemann-Hilbert问题,而后一问题可以用通常的Muskhel-ishvili方法进行求解,并且可以相当简单地得到问题的闭合解。这些解在断裂动力学以及弹性动力学、静力学问题当中具有重要的应用价值和理论意义。 By means of the theory of complex functions, dynamic propagation problem on the rear sections of asymmetrical mode I crack tips subjected to homogeneous loads was researched. In terms of relevant relationship to equation of motion of the elastodynamics plane problem for an orthotropic anisotropic body, the universal representations of analytical solutions are obtained with the method of self-similar functions. The problems considered can be very facilely translated into Riemann-Hilbert problem by application of the approaches which are resolved by usual Muskhelishvili's methods, and their closed solutions are acquired rather straightforward. Those solutions have an important applied value and theoretical significance in the problems concerning fracture dynamics, ealstodynamics as well as elastostatics.
出处 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2009年第2期213-216,共4页 Journal of Liaoning Technical University (Natural Science)
基金 中国博士后基金资助项目(2005038199) 黑龙江省自然科学基金重点资助项目(ZJG04-08)
关键词 Ⅰ型裂纹 非对称 均布载荷 动态扩展 解析解 modeIcrack asymmetrical homogeneous loads dynamic propagation analytical solutions
  • 相关文献

参考文献9

  • 1Charepanov G. P. Mechanics of Brittle Fracture[M].Moseow:Nauka, 1973:732-792.
  • 2Fan Tian-you. Moving Dugdale model[J].Zeitschrift fur angcwandte Mathematik und Physik,1987(38): 630-641.
  • 3Knauss W. G, Dynamic fracture[J]. Int. J. Frac.,1987(25):35-91.
  • 4Atkinson C. The Propagation of a brittle crack in anisotropic material[J]. Int. J. Engng. Sci.,1965,3 (2):77-91.
  • 5胥红敏,吕念春,程靳.Ⅰ型动态裂纹二个扩展问题的位错分布函数[J].辽宁工程技术大学学报(自然科学版),2008,27(1):39-41. 被引量:4
  • 6Muskhelishvili. N. I. Some fundamental problems in the mathematical theory of elasticity[M]. Moscow:Nauka,1966~
  • 7Hoskins R.F., Generalized Functions[M].Ellis Horwood, 1979.
  • 8Sih G. C, Mechanics of Fracture 4. Elastodynamics Crack Problems[M]. Noordhoff, Leyden, 1977:213 -247.
  • 9数学手册编写组.数学手册[M].北京:高等教育出版社,2002..

二级参考文献10

  • 1Bibly B A, Eshelby J D. in Fracture.vol.l [M].H. Liebowitz, 1968:99-122
  • 2Lardner R W.Mathematical theory of dislocation and fracture[M]. University of Toronto Press, Toronto, 1974:150-195.
  • 3Billy B A, Cottrel A H, Swinden K H. The spread of plastic yield from a notch[M]. Proc. Roy. Soc. Series A, 1963,(272): 304-314.
  • 4N. I. Muskhelishvili. Some Fundamental Problems in the Mathematical Theory of Elasticity[M]. Nauka Moscow, 1968.
  • 5C. Atkinson. The Propagation of a brittle crack in anisotropic material. Int. J. Engng Sci. 1965,(3): 77-91.
  • 6Hoskins R F. Generalized functions[M]. Ellis Horwood, 1979.
  • 7Kanwal R P, Sharma D L.Singularity Methods for Elastostatics[J]. J. Elasticity, 1976,.6(4): 405-418.
  • 8Sih G.C. Mechanics of Fracture 4. Elastodynamics Crack Problems[M]. Noordhoff, Leyden. 1977:213-247
  • 9毕贤顺,吕念春,刘宝良.不同复合材料界面上的扩展裂纹问题[J].辽宁工程技术大学学报(自然科学版),2002,21(6):783-786. 被引量:6
  • 10吕念春,唐立强,程云虹.复合材料桥连的断裂动力学模型[J].力学季刊,2004,25(1):69-77. 被引量:8

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部