期刊文献+

王氏代数的推论和m阶全图的树的数量表达式

The Lemmas on Wong Algebra and a Formula on Tree Quantity of a m-Order Complete Graph
下载PDF
导出
摘要 在文献[1]提出的求一个图的全部树的方法中,王氏代数被用以筛除相关元素(相关树支)。此文将进一步讨论王氏代数的有关定义和运算规则,给出了部分相关和子相关符号向量等概念。文中提出的4个推论使王氏代数得以在求图的树的算法中得到系统的应用。在分析了m阶全图的关联矩阵的特性后,定理1给出了其具有的树数量的表达式。 In paper a method of listing all tree of a graph was presented and in this method Wong Algebra was employed to delete Relative Tree Branches In our paper we give out some new Wong Algebra's definitions and rules, such as partial relative symbol vector , complete relative symbol vector, symbol vector addition and multiplication operation etc The four lemmas obtained can be used to simplify the method of listing all trees of a graph After analysing the property of complete graph, a formula of tree quantity of a m-order complete graph is given in Theorem 1
出处 《计算机工程与设计》 CSCD 北大核心 1998年第2期3-8,共6页 Computer Engineering and Design
基金 国家自然科学基金 中科院沈阳自动化所’863’网点课题
关键词 图论 王氏代数 m阶全图 数量表达式 Graph theory Trees Wong algebra Relative tree branch m-order complete graph
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部