期刊文献+

有限偏序集中交族的Sperner型性质

Sperner-type properties of intersecting families in finite posets
下载PDF
导出
摘要 在有限分次偏序集上定义交族,在其上讨论Sperner理论中的各种性质,如Sperner性质、LYM性质以及正规匹配性质等,并给出这些性质之间的关系. This paper introduces intersecting families in finite graded posers, discusses on which various properties from Spemer theory,e, g. Sperner property, LYM property and NM property, etc. Some relations among them are also given.
作者 王军 张俊
出处 《上海师范大学学报(自然科学版)》 2009年第2期215-220,共6页 Journal of Shanghai Normal University(Natural Sciences)
基金 国家自然科学基金重点项目(10731040) 上海市教委重点项目(09ZZ134)
关键词 偏序集 Sperner定理 Erdo″s-Ko-Rado定理 LYM性质 NM性质 poset Sperner theorem Erdos-Ko-Bado theorem LYM property NM property
  • 相关文献

参考文献22

  • 1ANDERSON. Combinatofics of Finite Sets[ M]. Oxford: Oxford University Press, 1987.
  • 2BOLLOBAS B. Sperner systems consisting of pairs of complementary subsets[J]. J Combin Theory Ser A, 1973,15:363 -366.
  • 3BUTLER L M. A tmimodality result in the enumeration of subgroups of a finite abelian group[J]. Proc Amer Math Soc, 1987,101:771 -775.
  • 4CANFIELD E R. On a problem of Rota[J]. Adv Math, 1978,29:1 -10.
  • 5CZABARKA E. Shifting in finite vector spaces[ D]. University of South Carolina, 1998, UMI Number: 9918919.
  • 6DEZ, A M, FRANKL P. Erdos-Ko-Rado theorem -22 years later[J]. SIAM J Algebraic Discrete Methods, 1983,4:419 -431.
  • 7DILWORTH B P. A decomposition theorem for partially ordered sets[J]. Ann of Math, 1950,51:161 - 166.
  • 8ENGEL E. Spemer Theory [ M ]. Cambridge: Cambridge University Press, 1997.
  • 9ERDOS P, KO C,RADO R. Intersection theorems for systems of finite sets[J]. Quart J Math Oxford Ser, 1961,2:313 -318.
  • 10ERDOS P. My joint work with Richard Rado[ C]//WHITEHEAD C. Surveys in combinatorics 1987, London Math Soc Lecture Note Ser, Cambridge: Cambridge Univ Press,1987:53 -80.

二级参考文献2

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部