期刊文献+

采用符号序列Shannon熵的机器信息提取方法 被引量:1

Extracting Machine Information by Shannon Entropy of Symbolic Series
下载PDF
导出
摘要 讨论了将时间序列转化为符号序列,即信号粗粒化问题,给出二进制符号化和角区间符号化2种规则,得到了二进制符号化规则下的符号序列Shannon熵计算方法.对于汽油机瞬态排放信号、柴油机机身振动信号、转子轴振动信号,采用Shannon熵提取了信号特征,结果表明描述符号序列总体特征的Shannon熵能够便捷地反映机器的运行状况. The problem of how to translate a time series into symbolic series, which means signal coarsegrained, is discussed. The symbolizing regulations of binary and angle section are given. The method of calculating symbolic series Shannon entropy under binary symbolizing regulation is also introduced. The signal characteristics, which are in the gasoline-engine transient emission, diesel-engine block vibration and rotor shaft vibration, are extracted base on the Shannon entropy. The results indicate that the Shannon entropy, which describes the collectivity characteristics of symbolic series, could reflect the machine's operation condition conveniently.
作者 赵建华 张雨
出处 《武汉理工大学学报(交通科学与工程版)》 2009年第2期321-324,共4页 Journal of Wuhan University of Technology(Transportation Science & Engineering)
基金 国家自然科学基金项目资助(批准号:50176006)
关键词 符号序列分析 Shannon熵 机器 特征提取 symbolic series analysis Shannon entropy machine characteristic extracting
  • 相关文献

参考文献7

二级参考文献23

  • 1张雨.基于符号树Shannon熵的汽油机瞬态排放分析[J].长沙理工大学学报(自然科学版),2004,1(1):20-26. 被引量:6
  • 2褚福磊,张正松,冯冠平.碰摩转子系统的混沌特性[J].清华大学学报(自然科学版),1996,36(7):52-57. 被引量:88
  • 3Lehrman M, Rechester A B, White R B. Symbolic Analysis of Chaotic Signals and Turbulent Fluctuations[J]. Physical Review Letters,1997,78(1):54-57.
  • 4Tang X Z, Tracy E R, Boozer A D et al. Symbol Sequence Statistics in Noisy Chaotic Signal Reconstruction[J]. Physical Review Review E, 1995,51(5):3871-3889.
  • 5郝柏林.理论物理与生命科学[M].上海科学技术出版社,1999,9..
  • 6罗辽复.生命进化的物理观.上海:上海科学技术出版社,2001
  • 7R N Mantegna, H E Stanley. An introduction to econophysics: correlations and complexity in finance. Cambridge:Cambridge University Press,2000
  • 8J D Farmer. Physicists attempt to scale the ivory towers of finance. Computing in Sci & Eng,1999,1(6):26~39
  • 9T Lux, M Marchesi. Scaling and criticality in a stochastic multiagent model of financial market. Nature, 1999,397:498~500
  • 10R N Mantegna, H E Stanley. Scaling behavior in the dynamics of an economic index. Nature, 1995,376:46~49

共引文献46

同被引文献16

  • 1程军圣,于德介,杨宇.Hilbert-Huang变换端点效应问题的探讨[J].振动与冲击,2005,24(6):40-42. 被引量:46
  • 2杨建文,贾民平.希尔伯特-黄谱的端点效应分析及处理方法研究[J].振动工程学报,2006,19(2):283-288. 被引量:41
  • 3Huang N E,Shen Zheng, Long S R. The empiricalmodel decomposition and Hilbert spectrum for nonlin-ear and non-stationary time series analysis [J ]. Pro-ceedings of the Royal Society, Lond,1998. 454 ( A):903-995.
  • 4Huang N E,Wu M, Long S R,et al. A confidencelimit for the empirical mode decomposition and hilbertspectral analysis[J]. Proceedings of the Royal Society,Lond, 2003,459(A) :2317-2345.
  • 5Cheng Junsheng,Yu Dejie, Yang Yu. Application ofsupport vector regression machines to the processing ofend effects of hilbert-huang transform[J]. MechanicalSystems and Signal Processing, 2007,21 (3): 1197-1211.
  • 6Huang N E. Computer implicated empirical mode de-composition method. Apparatus,and article of manu-facture :U. S.,6311130B1[P]. 2001-10-30.
  • 7Qi Keyu,He Zhengjia, Zi Yanyang. Cosine window-based boundary processing methord for emd and its ap-plication in rubbing fault diagnosis [J]. MechanicalSystems and Signal Processing, 2007,21 (7): 2750-2760.
  • 8Jaclson E A. Perspectives of nonlinear dynamics[M].Cambridge,England; Cambridge University Press,1989:5-20.
  • 9Daw C S,Finney C E A, Tracy E R A. A review ofsymbolic analysis of experimental data[J]. Review ofScientific Instruments,2002,74(2):915-930.
  • 10Lehrman M,Rechester A B,White R B. Symbolic a-nalysis of chaotic signals and turbulent fluctuations[J]. Physical Review Letters, 1997,78(1): 54-57.

引证文献1

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部