摘要
该文研究了反自反矩阵的逆特征值问题及其最佳逼近问题,建立了反自反矩阵的逆特征值问题有解的充要条件,得到了解的表达式.进一步,对于任意给定的n阶复矩阵,得到了相关最佳逼近问题解的表达式.
In this paper, the inverse eigenvalue problem of antireflexive matrices and relevant optimal approximation problem are considered. Some necessary and sufficient conditions of the solvability for the inverse eigenvalue problem are given. A general representation of the solution is presented for solvable case. Furthermore, for any given complex matrix of dimension n, an expression of solution for its optimal approximation is presented.
出处
《数学物理学报(A辑)》
CSCD
北大核心
2009年第2期316-323,共8页
Acta Mathematica Scientia
基金
国家自然科学基金(10571012)
北京自然科学基金(1062005)资助
关键词
反自反矩阵
特征值反问题
最佳逼近
矩阵范数.
Antireflexive matrix
Inverse eigenvalue problem
Optimal approximation
Matrix norm.