期刊文献+

Lie环分解中的Krull-Schmidt定理

A Krull-Schmidt Theorem for Lie Rings
下载PDF
导出
摘要 该文得到了Lie环分解的Krull—Schmidt定理:若L是在理想上满足极大、极小条件的Lie环,如果L=H1+H2+…+Hr=K1+K2+…+Ks是L的两个Remak分解,即Hi和Kj是不可分解的,那么r=s,并且存在L的一个中心自同构a,使在适当排列Kj的顺序后,Hi^a=Ki,进一步地,对任意的k=1,2,…,r,L=K1+K2…+Kk+Hk+1+…Hr.如果L=H1+H2+…Hr是L的一个Remak分解,那么这个分解是L的唯一Remak分解当且仅当对L的任意正规自同态θ有Hi^θ≤Hi,i=1,2,…,r. In this paper, the authors get the Krull-Schmidt theorem for Lie rings. Let L be a Lie ring satisfying the maximal and minimal conditions on ideals. If L=H1+H2+…+Hr=K1+K2+…+Ks are two Remak decompositions of L, then r = s and there is a central automorphism α of L such that, after suitable relabeling of the Kj's (if necessary), Hi^α = Ki and L = K1 + K2 +…+Kk + Hk+1 +… Hr for k = 1, 2, …, r. Furthermore, L = H1 +H2 +…+ Hr is the only Remakdecomposition of L (up to the order of factors of the direct sums) if and only if Hi^θ≤ Hi for every normal endomorphism θ of L and i = 1, 2,.., r.
作者 廖军 刘合国
出处 《数学物理学报(A辑)》 CSCD 北大核心 2009年第2期399-405,共7页 Acta Mathematica Scientia
基金 国家自然科学基金(10371032) 教育部博士点基金(20050512002)资助
关键词 Krull—Schmidt定理 LIE环 直和分解 极大极小条件. Krull-Schmidt theorem Lie ring Direct sum decompositions Maximal and minimal conditions.
  • 相关文献

参考文献6

  • 1Khukhro E I. p-automorphisms of Finite p-groups. London Mathematical Society Lecture Series. Cambridge: Cambridge University Press, 1998, 246:57--62
  • 2Robinson D J S. A Course in the Theory of Groups (2nd ed). New York: Springer-verlag, 1995:80-85
  • 3Frank W, Anderson, Kent R Fuller. Rings and Categories of Modules. New York: Springer-verlag, 1992
  • 4Facchini A, Herbera D, Vamos P, Levy L S. Krull-Schmidt fails for Artinian modules. Proc Amer Math Soe, 1995, 123:3587-3592
  • 5Brookfield G. A Krull-Schmidt theorem for noetherian modules. J Algebra, 2002, 251:70-79
  • 6Warfield R B. A Krull-Schmidt theorem for infinite sums of modules. Proc Amer Math Soc, 1969, 22: 460-465

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部