期刊文献+

面板数据插值的线性组合模型及其实证

The Linear Combination Model of Panel Data Interpolation and Its Empirical Study
下载PDF
导出
摘要 针对面板数据插值问题,分别从截面数据和时间序列数据的角度,建立截面数据插值的克立格(Kriging)模型和时间序列数据插值的遗传神经网络(GABP)模型。在此基础上建立面板数据插值的线性组合模型,提出空间漂移度法确定组合插值模型的加权系数。对2007年福建部分市县人均GDP的插值的实证研究结果表明:面板数据的线性组合模型插值效果优于单项模型插值的效果。 A panel data is considered as a set of cross - sectional data or a set of time series data. The Kriging algorithm interpolation model based on cross- sectional data, and genetic algorithm back- propagation (GABP) neural network interpolation model based on time series data are established respectively. A combination interpolation model is constructed by the results of the two models. The weights of the combination model are obtained by spatial drift. An empirical research is carried out by interpolation some cities' GDP per capita in Fujian, 2007. It is found that the effective of the linear combination interpolation model is better than that of the single interpolation model on panel data.
作者 甘健胜
出处 《统计与信息论坛》 CSSCI 2009年第4期3-6,共4页 Journal of Statistics and Information
基金 福建省教育厅A类科技项目<空间数据线性组合插值模型研究>(JA08263)
关键词 面板数据 组合插值模型 空间漂移度 panel data combination interpolation model spatial drift
  • 相关文献

参考文献9

  • 1Kuh E. The validity of cross- sectional estimated behavior equations in times series applications[J]. Econometrica, 1959(27) : 197 - 214.
  • 2Mundlak Y. Empirical productions free of management Bias[J]. Journal of Farm Economics, 1961(43) :44-56.
  • 3Hoeh I. Estimation of production function parameters combing time- series and cross- section data[J]. Eeonometriea, 1962 (30) :34- 53.
  • 4Baltagi B H. Econometric analysis of panel data[ M]. 2nd ed. New York: Wiley, 2002:1 -9.
  • 5Nerlove M. Essays in panel data econometrics[M]. Cambridge: Cambridge University Press, 2002:1- 17.
  • 6Hsiao C. Analysis of panel data[M]. 2nd ed. Cambridge: Cambridge University Press, 2003:268-290.
  • 7李新,程国栋,卢玲.空间内插方法比较[J].地球科学进展,2000,15(3):260-265. 被引量:528
  • 8谭继强,丁明柱.空间数据插值方法的评价[J].测绘与空间地理信息,2004,27(4):11-13. 被引量:43
  • 9孙英君,王劲峰,柏延臣.地统计学方法进展研究[J].地球科学进展,2004,19(2):268-274. 被引量:112

二级参考文献10

共引文献671

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部