期刊文献+

变精度优势粗糙集属性约简择优算法 被引量:10

An Algorithm to Choose Reduction of Attributes of Variable Precision Dominance Rough Sets
原文传递
导出
摘要 以从多个粗糙集属性约简中选择最优的约简为目的,分析了作为度量工具的现有条件信息熵在应用过程中的缺陷.借鉴变精度粗糙集理论的思想,在对阈值参数进行二次选择的基础上,提出一种新的条件信息熵.基于新的条件信息熵设计了一种变精度优势粗糙集属性约简的择优算法,克服了现有条件信息熵的不足.理论分析和实践结果均表明了所设计算法的有效性. The disadvantages of the current conditional information entropy are analyzed when conditional information entropy is used to measure reduction of attributes.Variable precision rough sets theory is used as a basis for proposing a new condition information,with another parameter chosen.Finally,a new algorithm is designed based on new conditional information entropy to choose reduction of attributes of ariable precision dominance rough.Theoretical analysis and experimental results show the effectiveness of the algorithm proposed.
出处 《中国管理科学》 CSSCI 北大核心 2009年第2期169-175,共7页 Chinese Journal of Management Science
基金 国家自然科学基金资助项目(70473037) 江苏省"青蓝工程"资助项目
关键词 条件信息熵 优势粗糙集 属性约简 conditional information entropy dominance rough sets attributes reduction
  • 相关文献

参考文献16

  • 1Ziarko W.. Variable precision rough set model[J]. Journal of Computer and System Science, 1993, 46 (1) : 39-59.
  • 2Greco, S. Matarazzo, B. and Slowinski, R. Rough sets theory {or multicriteria decision analysis[J]. European Journal of Operational Research, 2001, 129 : 1- 47.
  • 3Greco, S. Matarazzo, B. and Slowinski, R. Rough approximation by dominance relations [J]. International journal of intelligent systems, 2002, 17: 153-171.
  • 4Greco, S. Matarazzo, B. Slowinski, R.. Ropgh sets methodology for sorting problems in presence of multiple attributes and criteria[J]. European journal of operational research, 2002, 138: 247-259.
  • 5戴毓,周德群.基于粗糙集理论的格序选择方法[J].中国管理科学,2007,15(6):105-110. 被引量:4
  • 6Liang J. Y. ,Chin K. S. ,Dang C Y,et aI. A new method for measuring uncertainty and fuzziness in rough set theory[J]. International Journal of General Systems, 2002, 31 (4): 331-342.
  • 7Liang J . Y. , Shi Z. Z. . The inlormanon entropy, rough entropy and knowledge granulation in rough theory[J]. International Journal of Uncertainty, Fuzziness and Knowledge- Based Systems, 2004, 12(1) : 37-46.
  • 8Hu Q. H. , Yu D. R.. Entropies of indiscernibility relation and its operations[J]. International Journal of Uncertainty, Fuzziness and Knowledge Based Systems, 2004, 12(5): 575-589.
  • 9Mi J. S. , Leung Y. ,Wu W. Z.. An uncertainty measure in partition-based fuzzy rough sets[J]. International Journal of General Systems, 2005, 34(1):77-90.
  • 10LiangJ . Y., Shi Z. Z. , Li D. Y. and Wierman M, J.. Information entropy, rough entropy and knowledge granulation in incomplete information systems[J]. International Journal of General Systems, 2006, 35(6): 641 -654.

二级参考文献37

  • 1潘郁,菅利荣,达庆利.多标准决策表中发现概率规则的变精度粗糙集方法[J].中国管理科学,2005,13(1):95-100. 被引量:6
  • 2菅利荣,刘思峰.偏好多属性决策表概率决策的扩展粗糙集方法[J].南京航空航天大学学报,2005,37(4):535-540. 被引量:9
  • 3王国胤.Rough集理论和知识获取[M].西安:西安交通大学出版社,2001..
  • 4[1]Pawlak Z, Grzymala-Busse J, Slowin ski R, et al. Rough sets [J]. Communications of the ACM, 1995, 38(11): 88-95.
  • 5[2]Düntsch I, Gediga G. Uncertainty measures of rough set prediction [J]. Artificial Intelligence, 1998, 106: 109-137.
  • 6[3]Ziarko W. Variable precision rough set model [J]. Journal of Computer and System Sciences, 1993, 46: 39-59.
  • 7[4]Pawlak Z. Rough Sets: Theoretical Aspects of Reasoning About Data [M]. Dordrecht: Kluwer Academic Publishers, 1991.
  • 8[1]Pawlak Z.Rough sets[J].International Journal of Computer and Information Sciences,1982,11:341-356.
  • 9[2]McSherry D..Knowledge discovery by inspection[J].Decision Support Systems,1997,21:43-47.
  • 10[3]Pomerol J.C..Artificial intelligence and human decision making[J].European Journal of Operational Research,1997,99:3-25.

共引文献652

同被引文献173

引证文献10

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部