期刊文献+

基于群体信息挖掘的协同差分进化算法及其应用 被引量:2

Cooperative coevolutionary differential evolution algorithm based on colony information mining and its application
下载PDF
导出
摘要 为了提高差分进化算法的寻优速度和寻优效能,提出了一种基于群体信息挖掘的协同差分进化算法。该算法首先利用协同进化的思想,将种群分解成不同的子种群,每个子种群采用不同的差分策略进行独立的差分和交叉操作,再将各个子种群合并成一个种群,并根据每个个体的适应度值挑选出最优个体;为了提高差分进化算法的局部搜索能力,引入了多元回归分析和模式搜索算法,对于整个种群,利用最小二乘法求得种群的寻优方向信息,并以此来指导种群中的每一个个体进行模式搜索。仿真试验和在精对苯二甲酸生产过程对羧基苯甲醛含量软测量模型参数估计中的实际应用表明:该算法的性能比传统的差分进化算法有较大的提高,取得了较好的效果。 To solve the defect of poor search ability and bad precision of optimal result of differential evolution algorithm, a cooperative co-evolutionary differential evolution algorithm based on colony information mining (CCDE) was proposed. It first split the population into several sub-populations based on cooperative co-evolution. Each sub-population did the differential operations and crossover operations individually, using different differential strategies. Then it combined all the sub-populations into a whole population, and picked out one best individual depending on the fitness of each individual. The multiple regression analysis and pattern search algorithm were joined into the algorithm to improve the local search ability. It used the information of search direction gained by the least square to guide each individual of the entire colony to do the pattern search. The simulation experiment and the application in parameter estimation of 4-carboxybenzaldehyde content soft sensor in the production of pure terephthalic acid showed that the performance of the algorithm was much better than differential evolution algorithm and the result was good.
作者 李昕 颜学峰
出处 《化工进展》 EI CAS CSCD 北大核心 2009年第5期778-783,共6页 Chemical Industry and Engineering Progress
基金 国家自然科学基金(20506003 20776042) 国家863计划(2007AA04Z164 2007AA04Z171)资助项目
关键词 差分进化算法 协同进化 多元回归分析 模式搜索 软测量 differential evolution algorithm cooperative coevolution multiple regression analysis pattern research soft sensor
  • 相关文献

参考文献15

  • 1Storn R,Price K.Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces [J].Technical Report,International Computer Science Institute,1995(8):22-25.
  • 2Storn R,Price K.Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces [J].Journal of Global Optimization,1997,11(4):341-359.
  • 3周艳平,顾幸生.差分进化算法研究进展[J].化工自动化及仪表,2007,34(3):1-6. 被引量:72
  • 4刘波,王凌,金以慧.差分进化算法研究进展[J].控制与决策,2007,22(7):721-729. 被引量:291
  • 5Chiou J P,Chang C F,Su C T.Ant direction hybrid differential evolution for solving large capacitor placement problems[J].IEEE Transactions on Power Systems,2004,19(4):1794-1800.
  • 6Xu R,et al.Modeling of gene regulatory networks with hybrid differential evolution and particle swarm optimization [J].Neural Networks,2007,20:917-927.
  • 7Kaelo P,Ali M M.A numerical study of some modified differential evolution algorithms [J].European Journal of Operational Research,2006,169:1176-1184.
  • 8Hillis D W.Coevolving parasites improve simulated evolution as an optimization procedure[J].Physica D,1991,42(1):228-234.
  • 9Husbands P,Mill F.Simulated coevolution as the mechanism for emergent planning and scheduling.proceedings of the fourth international conference on genetic algorithms[C]//San Mateo:Morgan Kaufmann Publishers,1991:264-270.
  • 10Potter M A,De Jong K A.A cooperative coevolutionary approach to function optimization[C]//The Third Parallel Problem Solving From Nature,1994:249-257.

二级参考文献118

共引文献351

同被引文献22

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部