期刊文献+

基于See5.0算法的决策树构建与分类研究 被引量:2

A Study of Construction and Classification of Decision Tree Classifiers Based on SEE5.0 Algorithm
下载PDF
导出
摘要 文中以地形较为复杂的济南市长清区为研究区域,综合TM影像的光谱特征、纹理特征与区域内的地形特征、植被特征信息作为样本集的属性值,结合研究区内6种主要地物类型训练数据集,基于See5.0的决策树分类法进行分类实验,并在ENVI中提取土地的利用现状信息。实验结果表明:综合利用不同的特征数据会有效的提高分类精度;See5.0和ENVI相结合可以高效、高精度地、客观地实现土地覆盖分类,是基于知识的遥感影像分类的有效的方法。 Combining TM spectrum, texture, terrain and NDVI as attributes of sample set to do class test using the decision tree algorithm based on See5.0,conjuncting with six major land cover types over Changqing District in Ji'nan, Shandong province ,and extracting the present situation information of land utilization in ENVI. The test show that the precision of classification, integrating different attributes data, has been improve obviously ,and the combination of See5.0 and ENVI is an effective method of remote sensing imagery classification based on knowledge to classify land cover types with high efficiency, high accuracy and reliability.
作者 梁坤 常鲁群
出处 《矿山测量》 2009年第2期41-43,共3页 Mine Surveying
  • 相关文献

参考文献7

  • 1Muchoney D, Borak J, Borak H C, etal. Application of the MODIS Global Supervised Classification to Vegetation and Land Cover Mapping of Central America [J]. NT. J. Remote Sensing, 2000, 21:1115 - 1138.
  • 2Joy S M, Reich R M, Reynolds R T. A Non - parametric, Supervised Classification of Vegetation Types on the Kaibab National Forest using decision trees [ J]. NT. J. Remote Sensing, 2003, 24(9) :1835 - 1852.
  • 3邓劲松,王珂,邓艳华,黄娟琴.SPOT-5卫星影像中水体信息自动提取的一种有效方法[J].上海交通大学学报(农业科学版),2005,23(2):198-201. 被引量:35
  • 4李明诗,彭世揆,周林,马以秀.基于ASTER数据的决策树自动构建及分类研究[J].国土资源遥感,2006,18(3):33-36. 被引量:19
  • 5http://www. rulequest. com/see.5 -comparison. html.
  • 6Derek R Peddle , Steven E Franklin. Image Texture Processing and Data Intergration for surface Pattern Discrimination [ J ]. Photogrammetric Engineering and Remote Sensing , 1991 ,57(4) :413 -420.
  • 7刘勇卫 贺雪鸿 译.遥感精解[M].北京:测绘出版杜,1993..

二级参考文献16

共引文献54

同被引文献41

引证文献2

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部