摘要
论证了线性算子f在模f的核的商空间上所诱导的算子保持f的有界性及闭性,Banach空间上满的线性算子f所诱导的算子T:X/X0→X/f(X0)保持f的紧性,并且当f为线性同构时,T是线性同胚映射。
In this paper, it is proved that the operator deduced on the quotient space moduled by the kernel of a linear operator f preserves the boundedness and closedness of f, and that the operator T: X/X0→X/f(X0) deduced by a surjective linear operator f on a Banach space preserves the compactness of f and T is homeomorphic if f is isomorphic.
出处
《河北科技师范学院学报》
CAS
2009年第1期34-36,共3页
Journal of Hebei Normal University of Science & Technology
基金
唐山师范学院自然科学研究发展基金项目(项目编号:07C21)
关键词
赋范线性空间
商空间
线性算子
normed linear space
quotient space
linear operator