期刊文献+

数据分类中决策树算法的一些改进 被引量:1

An Improved Decision Tree Algorithm in Data Classification
下载PDF
导出
摘要 分类是数据挖掘中重要的研究课题。决策树方法是一种常用的分类算法,所建立的树型结构模型很直观,易于理解。传统的分类方法在处理海量数据时会出现性能下降或精度降低的问题,经过改进的ID3算法,基于SPRINT,消除了内存的限制,运算速度快,具有可伸缩性,性能较好。 Classification is an important topic in data mining research. Decision tree is one of well-known classification algorithms with its tree model easy to understand. However, traditional decision tree classification algorithms have low performance or low precision when processing large data sets. Based on SPRINT, an improved decision tree algorithm (ID3) reduces memory footprint and improves performance with comparable sealability.
作者 谢枫平
出处 《龙岩学院学报》 2009年第2期22-26,共5页 Journal of Longyan University
关键词 数据挖掘 分类 决策树 ID3 SPRINT data mining classification decision tree ID3 SPRINT
  • 相关文献

参考文献8

二级参考文献26

  • 1Quinlan J R. C4.5: Programs for MachineLearning [M]. Morgan Kauffman, 1993.
  • 2Yoshimitsu Kudoh, Makoto Haraguchi. An Appropriate Abstraction for Constructing a Compact Decision Tree [M]. Springer-Verlag Berlin Heidelberg,2000.
  • 3Sonajharia Minz, Rajni Jain. Rough Setbased Decision Tree Model for Classification[M]. Springer-Verlag Berlin Heidelberg, 2003.
  • 4B Chandra, Sati Mazumdar, Vincent Arena, et al. Elegant Decision Tree Algorithm for Classification in Data Mining[C].Proceedings of the 3th International Conference on Web Information Systems Engineering, 2002.
  • 5Khaled Alsabti, Sanjay Ranka, Vineet Singh. CLOUDS: A Decision Tree Classifier for Large Datasets[C]. 4th International Conference on Knowledge Discovery and Data Mining, 1998.
  • 6Zhiwei Fu. Using Genetic Algorithms-based Approach for Better Decision Trees: A Computational Study[M].Springer-Verlag Berlin Heidelberg, 2002.
  • 7Say Wei FOO, Eng Guan LIM. Speaker Recognition Using Adaptively Boosted Decision Tree Classifier[C].Acoustics, Speech, and Signal Processing, 2002. Proceedings(ICASSP'02) IEEE International Conference on,Volume1,2002.
  • 8Lili Diao, Keyun Hu, Yuchang Lu,et al.Boosting Simple Decision Tree with Bayesian Learning for Text Categorization[C]. Intelligent Control and Automation, 2002. Proceedings of the 4th World Congress on, Volume1,2002.
  • 9A Srivastava, E Han, V Kumar,et al.Parallel Formulations of Decision-tree Classification Algorithms[J]. Data Mining and Knowledge Discovery,1999, 3(3): 237-261.
  • 10Kazuto Kubota, Akihiko Nakase, Hiroshi Sakai,et al.Parallelization of Decision Tree Algorithm and Its Performance Evaluation[C]. High Performance Computing in the Asia-Pacific Region'00. The 4th International Conference/Exhibition on, Volume 2, 2000.

共引文献233

同被引文献7

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部