期刊文献+

一类具有非线性传染率的传染病模型性态分析 被引量:2

Behavior of an Epidemic Model with Nonlinear Incidence
下载PDF
导出
摘要 研究了一类具有一般传染率寄生虫宿主模型的全局性态.利用微分方程定性理论得到了宿主和寄生虫共同绝灭的条件;进一步得到了宿主和寄生虫共存即系统正平衡点存在的条件,证明了正平衡点只要存在一定是全局稳定的. The global qualitative behavior of a microparasite model with general incidence was studied. The extinction conditions of host and parasite are obtained by the method of the differential qualitative theory. Furthermore, the existence conditions of the positive equilibrium point of the system are derived. The conclusion, that the sufficient condition for global stability is the existence of the positive equilibrium point, is proved.
作者 李桂花
机构地区 中北大学理学院
出处 《中北大学学报(自然科学版)》 CAS 北大核心 2009年第2期95-99,共5页 Journal of North University of China(Natural Science Edition)
基金 国家自然科学基金资助项目(60771026) 山西省青年科技基金资助项目(2007021006)
关键词 一般传染率 寄生虫 宿主 宿主绝灭 全局稳定 general incidence parasite host host extinction global stability
  • 相关文献

参考文献13

  • 1May R M,Anderson R M.Population biology of infectious diseases.Part Ⅱ[J].Nature,1979,280:455-461.
  • 2Anderson R M,May R M.Population biology of infectious diseases.Part I[J].Nature,1979,280:361-367.
  • 3Brauer F,Castillo-Chavez C.Mathematical Models in Population Biology[M].Springer-Verlag,Berlin-Heidelberg,New York,2001.
  • 4De Jong M C M,Diekmann O,Heesterbeek J A P.How Does Transmission Depend on Population Size?,In Human Infectious Diseases,Epidemic Models,Mollison D,ed.[M].Cambridge:Cambridge University Press,1995:84-94.
  • 5Grenfell B T.Ecology of Disease in Natural Populations[M].Cambridge:Cambridge University Press,1995.
  • 6McCallum H.Modelling wildlife-parasite interactions to help plan and interpret field studies[J].Wildlife Research,1995,22:21-29.
  • 7Thieme H R.Stability Change of the Endemic Equilibrium in Age-structured Models for the Spread of S→1→R Type Infectious Diseases.Differential Equations Models in Biology,Epidemiology and Ecology (Claremont,CA,1990)[M].Lecture Notes in Biomath.,Springer,Berlin,1991,92:139-158.
  • 8Wang W,Li Y,Hethcote H W.Bifurcations in a host-parasite model with nonlinear incidence[J].Internat.J.Bifur.Chaos Appl.Sci.Engrg.,2006,11:3291-3307.
  • 9Ebert D,Lipsitch M,Mangin K L.The effect of parasites on host population density and extinction:experimental epidemiology with Daphnia and six microparasites[J].American Naturalist,2000,156:459-477.
  • 10Hwang T W.Deterministic extinction effect of parasites on host populations[J].Math.Biol,2003,46:17-30.

同被引文献26

  • 1Abid Ali Lashari,Muhammad Ozair,Gul Zaman,李学志.潜伏期和染病期均具有传染性的媒介传染病模型的全局稳定性分析(英文)[J].应用泛函分析学报,2012,14(4):321-329. 被引量:6
  • 2KluytmansJ, van Belkum A, Verbrugh H. Nasal carriage of Staphylococcus aureus , epidemiology, underlying mechanisms, and associated risk[J]. Clin MicrobioI Rev, 1997(0): 505-520.
  • 3Kuehnert MJ, Kruszon-Moran D, Hill H A, et al. Prevalence of Staphylococcus aureus nasal colonization in the United States, 2001-2002[J].J Infect Dis, 2006 (93): 172-179.
  • 4Lipsitch M, Levin B R The population dynamics of antimicrobial chemotherapy[J]. Antimicrob Agent Chemother , 1997(41): 363-373.
  • 5Xue Yakui, Li Tiantian. Stability and Hopf bifurcation for a delayed SIR epidemic model with logistic growth[J]. Abstract and Applied Analysis, 2013: 916130.
  • 6Xue Yakui, Wang Xiaoqing. Stability and local Hopf bifurcation for a predator-prey model with delay[J]. Discrete Dynamics in Nature and Society, 2012: 252437.
  • 7Wei H M, Li X Z, Martcheva M. An epidemic model of a vector-borne disease with direct transmission and time delay[J].J. Math. Anal. Appl, 2008 (342): 895-908.
  • 8Meng X Z, Chen L S, Cheng H D. Two profitless delays for the SEIRS epidemic disease model with nonlinear incidence and pulse vaccination[J]. Appl. Math. Cornput, 2007(86): 516-529.
  • 9XU R Global dynamics of an SEIS epidemiological model with time delay describing a latent period[J]. Math. Comput. Simulat , 2012(85): 90-102.
  • 10Harrus S, Baneth G. Drivers for the emergence and re-emergence of vector-borne protozoal and bacterial diseases[J]. Int.J. Parasitol , 2005(35): 1309-1318.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部